Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 504 papers shown
Title
Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
65
30
0
02 Mar 2021
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
92
32
0
02 Mar 2021
Neural Generalization of Multiple Kernel Learning
Ahamad Navid Ghanizadeh
Kamaledin Ghiasi-Shirazi
R. Monsefi
Mohammadreza Qaraei
25
2
0
26 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
82
109
0
24 Feb 2021
On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
UQCV
81
105
0
22 Feb 2021
Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting
I. Hawryluk
H. Hoeltgebaum
Swapnil Mishra
Xenia Miscouridou
R. Schnekenberg
C. Whittaker
Michaela Vollmer
Seth Flaxman
Samir Bhatt
T. Mellan
33
16
0
22 Feb 2021
Risk factor identification for incident heart failure using neural network distillation and variable selection
Yikuan Li
Shishir Rao
M. Mamouei
G. Salimi-Khorshidi
D. Canoy
A. Hassaine
Thomas Lukasiewicz
Kazem Rahimi
23
0
0
17 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
321
94
0
16 Feb 2021
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning
Idan Achituve
Aviv Navon
Yochai Yemini
Gal Chechik
Ethan Fetaya
GP
64
34
0
15 Feb 2021
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CML
AI4TS
113
110
0
11 Feb 2021
Attentive Gaussian processes for probabilistic time-series generation
Kuilin Chen
Chi-Guhn Lee
AI4TS
23
1
0
10 Feb 2021
The Analysis from Nonlinear Distance Metric to Kernel-based Drug Prescription Prediction System
D. Chang
O. Frieder
C. Hung
Hao-Ren Yao
20
2
0
04 Feb 2021
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Martin Wistuba
Josif Grabocka
BDL
104
70
0
19 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
41
12
0
18 Jan 2021
Sensitivity Prewarping for Local Surrogate Modeling
Nathan Wycoff
M. Binois
R. Gramacy
63
10
0
15 Jan 2021
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefan Wrobel
UQCV
31
3
0
07 Jan 2021
Wasserstein Dropout
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefanie Wrobel
BDL
OOD
UQCV
44
1
0
23 Dec 2020
Guiding Neural Network Initialization via Marginal Likelihood Maximization
Anthony S. Tai
Chunfeng Huang
22
0
0
17 Dec 2020
Kernelized Classification in Deep Networks
Sadeep Jayasumana
Srikumar Ramalingam
Sanjiv Kumar
41
4
0
08 Dec 2020
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning
Hongseok Namkoong
Sam Daulton
E. Bakshy
OffRL
46
7
0
29 Nov 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
96
18
0
25 Nov 2020
Asymptotics of the Empirical Bootstrap Method Beyond Asymptotic Normality
Morgane Austern
Vasilis Syrgkanis
79
4
0
23 Nov 2020
Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS
P. A. Sreekar
Ujjwal Tiwari
A. Namboodiri
39
2
0
17 Nov 2020
A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
23
3
0
10 Nov 2020
Learning and Evaluating Representations for Deep One-class Classification
Kihyuk Sohn
Chun-Liang Li
Jinsung Yoon
Minho Jin
Tomas Pfister
SSL
177
202
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
74
5
0
28 Oct 2020
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
112
44
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
89
29
0
26 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
71
26
0
22 Oct 2020
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
Jaehoon Lee
Lechao Xiao
Jeffrey Pennington
Jasper Snoek
UQCV
BDL
74
16
0
14 Oct 2020
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
98
11
0
09 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
A. Tompkins
Rafael Oliveira
F. Ramos
63
6
0
09 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDL
MedIm
79
9
0
16 Sep 2020
End-to-end Kernel Learning via Generative Random Fourier Features
Kun Fang
Fanghui Liu
Xiaolin Huang
Jie Yang
49
9
0
10 Sep 2020
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
FedML
106
15
0
07 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
66
42
0
21 Aug 2020
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
88
19
0
11 Aug 2020
Do ideas have shape? Idea registration as the continuous limit of artificial neural networks
H. Owhadi
153
14
0
10 Aug 2020
DeepNNK: Explaining deep models and their generalization using polytope interpolation
Sarath Shekkizhar
Antonio Ortega
30
6
0
20 Jul 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
109
63
0
20 Jul 2020
Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized Gaussian Process Approach
Yun Yuan
Qinzheng Wang
X. Yang
67
10
0
17 Jul 2020
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffM
BDL
120
5
0
06 Jul 2020
Deep Bayesian Quadrature Policy Optimization
Akella Ravi Tej
Kamyar Azizzadenesheli
Mohammad Ghavamzadeh
Anima Anandkumar
Yisong Yue
60
5
0
28 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
90
4
0
21 Jun 2020
Online Kernel based Generative Adversarial Networks
Yeojoon Youn
Neil Thistlethwaite
Sang Keun Choe
Jacob D. Abernethy
GAN
31
2
0
19 Jun 2020
Bayesian active learning for production, a systematic study and a reusable library
Parmida Atighehchian
Frederic Branchaud-Charron
Alexandre Lacoste
65
26
0
17 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
103
142
0
16 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
61
3
0
15 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
23
2
0
12 Jun 2020
Previous
1
2
3
...
10
11
6
7
8
9
Next