ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Kernel Interpolation for Scalable Online Gaussian Processes
Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
65
30
0
02 Mar 2021
Fast Adaptation with Linearized Neural Networks
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
92
32
0
02 Mar 2021
Neural Generalization of Multiple Kernel Learning
Neural Generalization of Multiple Kernel Learning
Ahamad Navid Ghanizadeh
Kamaledin Ghiasi-Shirazi
R. Monsefi
Mohammadreza Qaraei
25
2
0
26 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
On Feature Collapse and Deep Kernel Learning for Single Forward Pass
  Uncertainty
On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty
Joost R. van Amersfoort
Lewis Smith
Andrew Jesson
Oscar Key
Y. Gal
UQCV
81
105
0
22 Feb 2021
Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting
Gaussian Process Nowcasting: Application to COVID-19 Mortality Reporting
I. Hawryluk
H. Hoeltgebaum
Swapnil Mishra
Xenia Miscouridou
R. Schnekenberg
C. Whittaker
Michaela Vollmer
Seth Flaxman
Samir Bhatt
T. Mellan
33
16
0
22 Feb 2021
Risk factor identification for incident heart failure using neural
  network distillation and variable selection
Risk factor identification for incident heart failure using neural network distillation and variable selection
Yikuan Li
Shishir Rao
M. Mamouei
G. Salimi-Khorshidi
D. Canoy
A. Hassaine
Thomas Lukasiewicz
Kazem Rahimi
23
0
0
17 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PERUQLMUQCVUD
321
94
0
16 Feb 2021
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning
Idan Achituve
Aviv Navon
Yochai Yemini
Gal Chechik
Ethan Fetaya
GP
64
34
0
15 Feb 2021
Causal Inference for Time series Analysis: Problems, Methods and
  Evaluation
Causal Inference for Time series Analysis: Problems, Methods and Evaluation
Raha Moraffah
Paras Sheth
Mansooreh Karami
Anchit Bhattacharya
Qianru Wang
Anique Tahir
A. Raglin
Huan Liu
CMLAI4TS
113
110
0
11 Feb 2021
Attentive Gaussian processes for probabilistic time-series generation
Attentive Gaussian processes for probabilistic time-series generation
Kuilin Chen
Chi-Guhn Lee
AI4TS
23
1
0
10 Feb 2021
The Analysis from Nonlinear Distance Metric to Kernel-based Drug
  Prescription Prediction System
The Analysis from Nonlinear Distance Metric to Kernel-based Drug Prescription Prediction System
D. Chang
O. Frieder
C. Hung
Hao-Ren Yao
20
2
0
04 Feb 2021
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Martin Wistuba
Josif Grabocka
BDL
104
70
0
19 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
41
12
0
18 Jan 2021
Sensitivity Prewarping for Local Surrogate Modeling
Sensitivity Prewarping for Local Surrogate Modeling
Nathan Wycoff
M. Binois
R. Gramacy
63
10
0
15 Jan 2021
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
A Novel Regression Loss for Non-Parametric Uncertainty Optimization
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefan Wrobel
UQCV
31
3
0
07 Jan 2021
Wasserstein Dropout
Wasserstein Dropout
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefanie Wrobel
BDLOODUQCV
44
1
0
23 Dec 2020
Guiding Neural Network Initialization via Marginal Likelihood
  Maximization
Guiding Neural Network Initialization via Marginal Likelihood Maximization
Anthony S. Tai
Chunfeng Huang
22
0
0
17 Dec 2020
Kernelized Classification in Deep Networks
Kernelized Classification in Deep Networks
Sadeep Jayasumana
Srikumar Ramalingam
Sanjiv Kumar
41
4
0
08 Dec 2020
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling
  via Imitation Learning
Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning
Hongseok Namkoong
Sam Daulton
E. Bakshy
OffRL
46
7
0
29 Nov 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
96
18
0
25 Nov 2020
Asymptotics of the Empirical Bootstrap Method Beyond Asymptotic
  Normality
Asymptotics of the Empirical Bootstrap Method Beyond Asymptotic Normality
Morgane Austern
Vasilis Syrgkanis
79
4
0
23 Nov 2020
Reducing the Variance of Variational Estimates of Mutual Information by
  Limiting the Critic's Hypothesis Space to RKHS
Reducing the Variance of Variational Estimates of Mutual Information by Limiting the Critic's Hypothesis Space to RKHS
P. A. Sreekar
Ujjwal Tiwari
A. Namboodiri
39
2
0
17 Nov 2020
A Variational Infinite Mixture for Probabilistic Inverse Dynamics
  Learning
A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
23
3
0
10 Nov 2020
Learning and Evaluating Representations for Deep One-class
  Classification
Learning and Evaluating Representations for Deep One-class Classification
Kihyuk Sohn
Chun-Liang Li
Jinsung Yoon
Minho Jin
Tomas Pfister
SSL
177
202
0
04 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
74
5
0
28 Oct 2020
Are wider nets better given the same number of parameters?
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
112
44
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRLBDL
89
29
0
26 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
71
26
0
22 Oct 2020
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
  in the Infinite-Width Limit
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
Jaehoon Lee
Lechao Xiao
Jeffrey Pennington
Jasper Snoek
UQCVBDL
74
16
0
14 Oct 2020
Few-shot Learning for Spatial Regression
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
98
11
0
09 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
A. Tompkins
Rafael Oliveira
F. Ramos
63
6
0
09 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDLMedIm
79
9
0
16 Sep 2020
End-to-end Kernel Learning via Generative Random Fourier Features
End-to-end Kernel Learning via Generative Random Fourier Features
Kun Fang
Fanghui Liu
Xiaolin Huang
Jie Yang
49
9
0
10 Sep 2020
Information Theoretic Meta Learning with Gaussian Processes
Information Theoretic Meta Learning with Gaussian Processes
Michalis K. Titsias
Francisco J. R. Ruiz
Sotirios Nikoloutsopoulos
Alexandre Galashov
FedML
106
15
0
07 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with
  Hierarchical Latent Variables
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
66
42
0
21 Aug 2020
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
88
19
0
11 Aug 2020
Do ideas have shape? Idea registration as the continuous limit of
  artificial neural networks
Do ideas have shape? Idea registration as the continuous limit of artificial neural networks
H. Owhadi
153
14
0
10 Aug 2020
DeepNNK: Explaining deep models and their generalization using polytope
  interpolation
DeepNNK: Explaining deep models and their generalization using polytope interpolation
Sarath Shekkizhar
Antonio Ortega
30
6
0
20 Jul 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
109
63
0
20 Jul 2020
Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
  Gaussian Process Approach
Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized Gaussian Process Approach
Yun Yuan
Qinzheng Wang
X. Yang
67
10
0
17 Jul 2020
Kernel Stein Generative Modeling
Kernel Stein Generative Modeling
Wei-Cheng Chang
Chun-Liang Li
Youssef Mroueh
Yiming Yang
DiffMBDL
120
5
0
06 Jul 2020
Deep Bayesian Quadrature Policy Optimization
Deep Bayesian Quadrature Policy Optimization
Akella Ravi Tej
Kamyar Azizzadenesheli
Mohammad Ghavamzadeh
Anima Anandkumar
Yisong Yue
60
5
0
28 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDLUQCV
90
4
0
21 Jun 2020
Online Kernel based Generative Adversarial Networks
Online Kernel based Generative Adversarial Networks
Yeojoon Youn
Neil Thistlethwaite
Sang Keun Choe
Jacob D. Abernethy
GAN
31
2
0
19 Jun 2020
Bayesian active learning for production, a systematic study and a
  reusable library
Bayesian active learning for production, a systematic study and a reusable library
Parmida Atighehchian
Frederic Branchaud-Charron
Alexandre Lacoste
65
26
0
17 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
103
142
0
16 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
61
3
0
15 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
23
2
0
12 Jun 2020
Previous
123...10116789
Next