Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 504 papers shown
Title
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
116
271
0
16 Aug 2018
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
110
90
0
13 Aug 2018
The Deep Kernelized Autoencoder
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
Robert Jenssen
L. Livi
64
18
0
19 Jul 2018
Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF)
Trefor W. Evans
P. Nair
GP
52
25
0
05 Jul 2018
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
107
517
0
04 Jul 2018
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCV
BDL
94
707
0
04 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
697
0
03 Jul 2018
Stagewise Safe Bayesian Optimization with Gaussian Processes
Yanan Sui
Vincent Zhuang
J. W. Burdick
Yisong Yue
111
143
0
20 Jun 2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
83
70
0
12 Jun 2018
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
85
4
0
10 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
199
1,008
0
05 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDL
GP
101
30
0
05 Jun 2018
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
Ingyo Chung
Saehoon Kim
Juho Lee
Kwang Joon Kim
Sung Ju Hwang
Eunho Yang
BDL
FedML
82
16
0
05 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
81
84
0
03 Jun 2018
Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance
Neal Jean
Sang Michael Xie
Stefano Ermon
BDL
SSL
79
77
0
26 May 2018
Multi-layer Kernel Ridge Regression for One-class Classification
C. Gautam
Aruna Tiwari
Sundaram Suresh
Alexandros Iosifidis
22
3
0
20 May 2018
Accurate Kernel Learning for Linear Gaussian Markov Processes using a Scalable Likelihood Computation
S. Waele
25
1
0
18 May 2018
Using Simulation to Improve Sample-Efficiency of Bayesian Optimization for Bipedal Robots
Akshara Rai
Rika Antonova
Franziska Meier
C. Atkeson
89
29
0
07 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
195
561
0
30 Apr 2018
Deep Embedding Kernel
Linh Le
Ying Xie
67
10
0
16 Apr 2018
Learning through deterministic assignment of hidden parameters
Jian Fang
Shaobo Lin
Zongben Xu
30
7
0
22 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
80
96
0
16 Mar 2018
Malytics: A Malware Detection Scheme
Mahmood Yousefi-Azar
Len Hamey
Vijay Varadharajan
Shiping Chen
61
40
0
09 Mar 2018
On Kernel Method-Based Connectionist Models and Supervised Deep Learning Without Backpropagation
Shiyu Duan
Shujian Yu
Yunmei Chen
José C. Príncipe
36
16
0
11 Feb 2018
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
87
35
0
28 Jan 2018
Stacked Kernel Network
Shuai Zhang
Jianxin Li
P. Xie
Yingchun Zhang
Minglai Shao
Haoyi Zhou
Mengyi Yan
202
9
0
25 Nov 2017
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
130
72
0
23 Nov 2017
Optimizing Kernel Machines using Deep Learning
Huan Song
Jayaraman J. Thiagarajan
P. Sattigeri
A. Spanias
75
53
0
15 Nov 2017
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
69
95
0
09 Nov 2017
Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation
Roman Föll
B. Haasdonk
Markus Hanselmann
Holger Ulmer
BDL
63
6
0
02 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
160
1,100
0
01 Nov 2017
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
70
40
0
24 Oct 2017
Improving One-Shot Learning through Fusing Side Information
Yao-Hung Hubert Tsai
Ruslan Salakhutdinov
FedML
53
51
0
23 Oct 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
93
62
0
19 Oct 2017
Robust Hypothesis Test for Nonlinear Effect with Gaussian Processes
J. Liu
B. Coull
48
10
0
03 Oct 2017
A representer theorem for deep kernel learning
B. Bohn
M. Griebel
C. Rieger
78
56
0
29 Sep 2017
Improving Output Uncertainty Estimation and Generalization in Deep Learning via Neural Network Gaussian Processes
Tomoharu Iwata
Zoubin Ghahramani
UQCV
BDL
71
42
0
19 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
123
172
0
08 Jul 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
301
5,890
0
14 Jun 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
77
52
0
08 Jun 2017
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric Xing
CML
101
83
0
29 May 2017
Bayesian GAN
Yunus Saatci
A. Wilson
GAN
106
133
0
26 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
115
424
0
24 May 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
70
726
0
24 May 2017
The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
E. Maris
BDL
195
47
0
19 May 2017
Multimodal Word Distributions
Ben Athiwaratkun
A. Wilson
104
90
0
27 Apr 2017
Nonparametric Variational Auto-encoders for Hierarchical Representation Learning
Prasoon Goyal
Zhiting Hu
Xiaodan Liang
Chenyu Wang
Eric Xing
CML
BDL
92
117
0
21 Mar 2017
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
80
210
0
13 Mar 2017
Deep Radial Kernel Networks: Approximating Radially Symmetric Functions with Deep Networks
B. McCane
Lech Szymanski
83
6
0
09 Mar 2017
Deep Kernelized Autoencoders
Michael C. Kampffmeyer
Sigurd Løkse
F. Bianchi
Robert Jenssen
L. Livi
73
18
0
08 Feb 2017
Previous
1
2
3
...
10
11
9
Next