ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Probability-Generating Function Kernels for Spherical Data
Probability-Generating Function Kernels for Spherical Data
Theodore Papamarkou
Alexey Lindo
GP
29
0
0
01 Dec 2021
Neural Fields as Learnable Kernels for 3D Reconstruction
Neural Fields as Learnable Kernels for 3D Reconstruction
Francis Williams
Zan Gojcic
S. Khamis
Denis Zorin
Joan Bruna
Sanja Fidler
Or Litany
106
66
0
26 Nov 2021
Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast
  Matrix-Vector Multiplication
Learning in High-Dimensional Feature Spaces Using ANOVA-Based Fast Matrix-Vector Multiplication
Franziska Nestler
Martin Stoll
Theresa Wagner
43
9
0
19 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
73
8
0
10 Nov 2021
Gaussian Process Meta Few-shot Classifier Learning via Linear
  Discriminant Laplace Approximation
Gaussian Process Meta Few-shot Classifier Learning via Linear Discriminant Laplace Approximation
Minyoung Kim
Timothy M. Hospedales
BDL
90
5
0
09 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
67
10
0
08 Nov 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer
  Treatment-Effects from Observational Data
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Andrew Jesson
P. Tigas
Joost R. van Amersfoort
Andreas Kirsch
Uri Shalit
Y. Gal
CML
109
32
0
03 Nov 2021
End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian
  Optimization
End-to-End Learning of Deep Kernel Acquisition Functions for Bayesian Optimization
Tomoharu Iwata
BDL
52
4
0
01 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
33
2
0
30 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
64
0
0
15 Oct 2021
Analysis of the first Genetic Engineering Attribution Challenge
Analysis of the first Genetic Engineering Attribution Challenge
O. Crook
K. L. Warmbrod
G. Lipstein
Christine Chung
Christopher W. Bakerlee
...
Shelly R. Holland
Jacob Swett
K. Esvelt
E. C. Alley
W. Bradshaw
40
9
0
14 Oct 2021
Dense Gaussian Processes for Few-Shot Segmentation
Dense Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
Michael Felsberg
Fahad Shahbaz Khan
Martin Danelljan
119
30
0
07 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
76
11
0
06 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
71
4
0
01 Oct 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
92
21
0
20 Sep 2021
Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
  Follow-up Time
Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long Follow-up Time
A. Lin
Jie Lu
Junyu Xuan
Fujin Zhu
Guangquan Zhang
CML
38
0
0
20 Sep 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of
  Coregionalization
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
55
17
0
20 Sep 2021
Global Convolutional Neural Processes
Global Convolutional Neural Processes
Xuesong Wang
Lina Yao
Xianzhi Wang
Hye-Young Paik
Sen Wang
BDLAI4CE
90
5
0
02 Sep 2021
Toward a `Standard Model' of Machine Learning
Toward a `Standard Model' of Machine Learning
Zhiting Hu
Eric Xing
95
12
0
17 Aug 2021
BoA-PTA, A Bayesian Optimization Accelerated Error-Free SPICE Solver
BoA-PTA, A Bayesian Optimization Accelerated Error-Free SPICE Solver
W. Xing
X. Jin
Yi Liu
Dan Niu
Weisheng Zhao
Zhou Jin
28
4
0
31 Jul 2021
Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
  Failure Time Models
Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated Failure Time Models
Zhiliang Wu
Yinchong Yang
Peter A. Fasching
Volker Tresp
BDL
73
10
0
26 Jul 2021
Stein Variational Gradient Descent with Multiple Kernel
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
67
5
0
20 Jul 2021
Kernel Continual Learning
Kernel Continual Learning
Mohammad Mahdi Derakhshani
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
CLLBDLVLM
120
38
0
12 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
82
1
0
05 Jul 2021
Gradient Importance Learning for Incomplete Observations
Gradient Importance Learning for Incomplete Observations
Qitong Gao
Dong Wang
Joshua D. Amason
Siyang Yuan
Chenyang Tao
Ricardo Henao
M. Hadziahmetovic
Lawrence Carin
Miroslav Pajic
50
10
0
05 Jul 2021
Personalized Federated Learning with Gaussian Processes
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
87
103
0
29 Jun 2021
Distributional Gradient Matching for Learning Uncertain Neural Dynamics
  Models
Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models
Lenart Treven
Philippe Wenk
Florian Dorfler
Andreas Krause
OOD
42
2
0
22 Jun 2021
Kernel Identification Through Transformers
Kernel Identification Through Transformers
F. Simpson
Ian Davies
V. Lalchand
A. Vullo
N. Durrande
C. Rasmussen
63
11
0
15 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDLUQCV
100
30
0
14 Jun 2021
Probability Paths and the Structure of Predictions over Time
Probability Paths and the Structure of Predictions over Time
Zhiyuan Jerry Lin
Hao Sheng
Sharad Goel
40
2
0
11 Jun 2021
Measuring the robustness of Gaussian processes to kernel choice
Measuring the robustness of Gaussian processes to kernel choice
William T. Stephenson
S. Ghosh
Tin D. Nguyen
Mikhail Yurochkin
Sameer K. Deshpande
Tamara Broderick
GP
35
11
0
11 Jun 2021
Learning Nonparametric Volterra Kernels with Gaussian Processes
Learning Nonparametric Volterra Kernels with Gaussian Processes
M. Ross
M. Smith
Mauricio A. Alvarez
GP
31
7
0
10 Jun 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDLAI4TS
71
3
0
09 Jun 2021
High-Dimensional Bayesian Optimisation with Variational Autoencoders and
  Deep Metric Learning
High-Dimensional Bayesian Optimisation with Variational Autoencoders and Deep Metric Learning
Antoine Grosnit
Rasul Tutunov
A. Maraval
Ryan-Rhys Griffiths
Alexander I. Cowen-Rivers
...
Wenlong Lyu
Zhitang Chen
Jun Wang
Jan Peters
Haitham Bou-Ammar
BDLDRL
97
61
0
07 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
84
28
0
06 Jun 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output
  Pairs in Deep Learning
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD3DPC
120
142
0
04 Jun 2021
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
  Kernel Learning
Quantifying Predictive Uncertainty in Medical Image Analysis with Deep Kernel Learning
Zhiliang Wu
Yinchong Yang
Jindong Gu
Volker Tresp
UQCVMedIm
48
9
0
01 Jun 2021
Active Learning in Bayesian Neural Networks with Balanced Entropy
  Learning Principle
Active Learning in Bayesian Neural Networks with Balanced Entropy Learning Principle
J. Woo
108
11
0
30 May 2021
Understanding Uncertainty in Bayesian Deep Learning
Understanding Uncertainty in Bayesian Deep Learning
Cooper Lorsung
BDLUQCV
21
0
0
21 May 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
  $L^1$-Regularization
Hierarchical Non-Stationary Temporal Gaussian Processes With L1L^1L1-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
46
0
0
20 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
134
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDLAI4CE
385
17
0
23 Apr 2021
Multivariate Deep Evidential Regression
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDLPEREDLUQCV
85
21
0
13 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
32
7
0
08 Apr 2021
Deep Gaussian Processes for Few-Shot Segmentation
Deep Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
Martin Danelljan
Michael Felsberg
Fahad Shahbaz Khan
VLM
69
2
0
30 Mar 2021
A Temporal Kernel Approach for Deep Learning with Continuous-time
  Information
A Temporal Kernel Approach for Deep Learning with Continuous-time Information
Da Xu
Chuanwei Ruan
Evren Körpeoglu
Sushant Kumar
Kannan Achan
SyDaAI4TS
52
5
0
28 Mar 2021
Solving and Learning Nonlinear PDEs with Gaussian Processes
Solving and Learning Nonlinear PDEs with Gaussian Processes
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
93
157
0
24 Mar 2021
Raven's Progressive Matrices Completion with Latent Gaussian Process
  Priors
Raven's Progressive Matrices Completion with Latent Gaussian Process Priors
Fan Shi
Bin Li
Xiangyang Xue
LRM
70
9
0
22 Mar 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
102
32
0
18 Mar 2021
SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
  Models
SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox Models
Zhen Lin
Cao Xiao
Lucas Glass
M. P. M. Brandon Westover
Jimeng Sun
BDL
63
11
0
05 Mar 2021
Previous
123...567...91011
Next