Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 504 papers shown
Title
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Neta Glazer
David Chernin
Idan Achituve
Sharon Gannot
Ethan Fetaya
37
0
0
29 May 2025
Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks
Dongwoo Lee
Dong Bok Lee
Steven Adriaensen
Juho Lee
Sung Ju Hwang
Frank Hutter
Seon Joo Kim
Hae Beom Lee
BDL
69
0
0
29 May 2025
Training NTK to Generalize with KARE
Johannes Schwab
Bryan Kelly
Semyon Malamud
Teng Andrea Xu
146
0
0
16 May 2025
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDL
GP
62
0
0
14 May 2025
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
86
0
0
08 May 2025
CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
Minhyuk Lee
HyeKyung Yoon
MyungJoo Kang
AI4TS
153
0
0
04 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
70
0
0
24 Apr 2025
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
William R. Keely
Otto Lamminpää
Steffen Mauceri
Sean M. R. Crowell
Christopher W. O'Dell
Gregory R. McGarragh
218
0
0
23 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
88
2
0
21 Apr 2025
Towards Scalable Bayesian Optimization via Gradient-Informed Bayesian Neural Networks
Georgios Makrygiorgos
Joshua Hang Sai Ip
Ali Mesbah
BDL
88
1
0
14 Apr 2025
CI-RKM: A Class-Informed Approach to Robust Restricted Kernel Machines
Ritik Mishra
M. Akhtar
Muhammad Tanveer
68
0
0
12 Apr 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
89
1
0
10 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
483
1
0
08 Apr 2025
Outlook Towards Deployable Continual Learning for Particle Accelerators
Kishansingh Rajput
Sen Lin
Auralee Edelen
Willem Blokland
Malachi Schram
71
0
0
04 Apr 2025
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
195
0
0
02 Apr 2025
Why risk matters for protein binder design
Tudor-Stefan Cotet
Igor Krawczuk
114
0
0
31 Mar 2025
Squared families: Searching beyond regular probability models
Russell Tsuchida
Jiawei Liu
Cheng Soon Ong
Dino Sejdinovic
68
0
0
27 Mar 2025
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Ziqiang Liu
Yoshua Bengio
Can Chen
OffRL
121
4
0
21 Mar 2025
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
Nima Negarandeh
Carlos Mora
Ramin Bostanabad
101
0
0
18 Mar 2025
Bayesian Kernel Regression for Functional Data
Minoru Kusaba
Megumi Iwayama
Ryo Yoshida
81
0
0
17 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
101
6
0
03 Mar 2025
Uncertainty-aware abstention in medical diagnosis based on medical texts
Artem Vazhentsev
Ivan Sviridov
Alvard Barseghyan
Gleb Kuzmin
Alexander Panchenko
A. Nesterov
Artem Shelmanov
Maxim Panov
137
0
0
25 Feb 2025
Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs
Akshay Kudva
Wei-Ting Tang
J. Paulson
68
0
0
19 Feb 2025
Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
Naichang Ke
Ryogo Tanaka
Yoshinobu Kawahara
86
0
0
06 Jan 2025
Image Classification with Deep Reinforcement Active Learning
Mingyuan Jiu
Xuguang Song
H. Sahbi
Shupan Li
Yan Chen
Wei Guo
Lihua Guo
Mingliang Xu
VLM
56
1
0
31 Dec 2024
Towards Simple and Provable Parameter-Free Adaptive Gradient Methods
Yuanzhe Tao
Huizhuo Yuan
Xun Zhou
Yuan Cao
Q. Gu
ODL
66
0
0
27 Dec 2024
High-Dimensional Bayesian Optimization via Random Projection of Manifold Subspaces
Quoc-Anh Hoang Nguyen
The Hung Tran
122
2
0
21 Dec 2024
Uncertainty separation via ensemble quantile regression
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
UD
UQCV
127
0
0
18 Dec 2024
Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression
Junliang Lyu
Yixuan Zhang
Xiaoling Lu
Feng Zhou
FedML
139
1
0
14 Dec 2024
DKMGP: A Gaussian Process Approach to Multi-Task and Multi-Step Vehicle Dynamics Modeling in Autonomous Racing
Jingyun Ning
Madhur Behl
157
0
0
20 Nov 2024
Inversion-based Latent Bayesian Optimization
Jaewon Chu
Jinyoung Park
Seunghun Lee
H. Kim
BDL
37
4
0
08 Nov 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
99
0
0
07 Nov 2024
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
69
0
0
29 Oct 2024
Likelihood approximations via Gaussian approximate inference
Thang D. Bui
66
0
0
28 Oct 2024
Practical Bayesian Algorithm Execution via Posterior Sampling
Chu Xin Cheng
Raul Astudillo
Thomas Desautels
Yisong Yue
67
0
0
27 Oct 2024
A Causal Graph-Enhanced Gaussian Process Regression for Modeling Engine-out NOx
Shrenik Zinage
Ilias Bilionis
Peter Meckl
41
0
0
24 Oct 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
125
0
0
15 Oct 2024
A resource-efficient model for deep kernel learning
Luisa DÁmore
41
0
0
13 Oct 2024
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
57
0
0
08 Oct 2024
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
105
0
0
08 Oct 2024
Online scalable Gaussian processes with conformal prediction for guaranteed coverage
Jinwen Xu
Qin Lu
G. Giannakis
52
1
0
07 Oct 2024
Nonstationary Sparse Spectral Permanental Process
Zicheng Sun
Yixuan Zhang
Zenan Ling
Xuhui Fan
Feng Zhou
50
0
0
04 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
110
0
0
04 Oct 2024
Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments
Boris N. Slautin
Yu Liu
Jan Dec
Vladimir V. Shvartsman
Doru C. Lupascu
M. Ziatdinov
Sergei V. Kalinin
108
0
0
03 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
127
0
0
02 Oct 2024
End-to-End Conformal Calibration for Optimization Under Uncertainty
Christopher Yeh
Nicolas H. Christianson
Alan Wu
Adam Wierman
Yisong Yue
116
5
0
30 Sep 2024
SANE: Strategic Autonomous Non-Smooth Exploration for Multiple Optima Discovery in Multi-modal and Non-differentiable Black-box Functions
Arpan Biswas
Rama Vasudevan
Rohit Pant
Ichiro Takeuchi
Hiroshi Funakubo
Yongtao Liu
94
0
0
18 Sep 2024
Learning Representations for Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
103
0
0
10 Sep 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
61
0
0
07 Aug 2024
Few-shot Scooping Under Domain Shift via Simulated Maximal Deployment Gaps
Yifan Zhu
Pranay Thangeda
Erica Tevere
Ashish Goel
Erik Kramer
Hari Nayar
Melkior Ornik
Kris K. Hauser
74
0
0
06 Aug 2024
1
2
3
4
...
9
10
11
Next