ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Few-Shot Speech Deepfake Detection Adaptation with Gaussian Processes
Neta Glazer
David Chernin
Idan Achituve
Sharon Gannot
Ethan Fetaya
37
0
0
29 May 2025
Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks
Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks
Dongwoo Lee
Dong Bok Lee
Steven Adriaensen
Juho Lee
Sung Ju Hwang
Frank Hutter
Seon Joo Kim
Hae Beom Lee
BDL
69
0
0
29 May 2025
Training NTK to Generalize with KARE
Training NTK to Generalize with KARE
Johannes Schwab
Bryan Kelly
Semyon Malamud
Teng Andrea Xu
146
0
0
16 May 2025
Scaling Gaussian Process Regression with Full Derivative Observations
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDLGP
62
0
0
14 May 2025
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
86
0
0
08 May 2025
CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
Minhyuk Lee
HyeKyung Yoon
MyungJoo Kang
AI4TS
153
0
0
04 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
70
0
0
24 Apr 2025
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy
William R. Keely
Otto Lamminpää
Steffen Mauceri
Sean M. R. Crowell
Christopher W. O'Dell
Gregory R. McGarragh
218
0
0
23 Apr 2025
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Latent Bayesian Optimization via Autoregressive Normalizing Flows
Seunghun Lee
Jinyoung Park
Jaewon Chu
Minseo Yoon
H. Kim
BDL
88
2
0
21 Apr 2025
Towards Scalable Bayesian Optimization via Gradient-Informed Bayesian Neural Networks
Towards Scalable Bayesian Optimization via Gradient-Informed Bayesian Neural Networks
Georgios Makrygiorgos
Joshua Hang Sai Ip
Ali Mesbah
BDL
88
1
0
14 Apr 2025
CI-RKM: A Class-Informed Approach to Robust Restricted Kernel Machines
CI-RKM: A Class-Informed Approach to Robust Restricted Kernel Machines
Ritik Mishra
M. Akhtar
Muhammad Tanveer
68
0
0
12 Apr 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
89
1
0
10 Apr 2025
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
483
1
0
08 Apr 2025
Outlook Towards Deployable Continual Learning for Particle Accelerators
Outlook Towards Deployable Continual Learning for Particle Accelerators
Kishansingh Rajput
Sen Lin
Auralee Edelen
Willem Blokland
Malachi Schram
71
0
0
04 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDLUQCV
195
0
0
02 Apr 2025
Why risk matters for protein binder design
Why risk matters for protein binder design
Tudor-Stefan Cotet
Igor Krawczuk
114
0
0
31 Mar 2025
Squared families: Searching beyond regular probability models
Squared families: Searching beyond regular probability models
Russell Tsuchida
Jiawei Liu
Cheng Soon Ong
Dino Sejdinovic
68
0
0
27 Mar 2025
Offline Model-Based Optimization: Comprehensive Review
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Ye Yuan
Taeyoung Yun
Ziqiang Liu
Yoshua Bengio
Can Chen
OffRL
121
4
0
21 Mar 2025
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
Nima Negarandeh
Carlos Mora
Ramin Bostanabad
101
0
0
18 Mar 2025
Bayesian Kernel Regression for Functional Data
Bayesian Kernel Regression for Functional Data
Minoru Kusaba
Megumi Iwayama
Ryo Yoshida
81
0
0
17 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
101
6
0
03 Mar 2025
Uncertainty-aware abstention in medical diagnosis based on medical texts
Uncertainty-aware abstention in medical diagnosis based on medical texts
Artem Vazhentsev
Ivan Sviridov
Alvard Barseghyan
Gleb Kuzmin
Alexander Panchenko
A. Nesterov
Artem Shelmanov
Maxim Panov
137
0
0
25 Feb 2025
Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs
Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs
Akshay Kudva
Wei-Ting Tang
J. Paulson
68
0
0
19 Feb 2025
Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
Learning Stochastic Nonlinear Dynamics with Embedded Latent Transfer Operators
Naichang Ke
Ryogo Tanaka
Yoshinobu Kawahara
86
0
0
06 Jan 2025
Image Classification with Deep Reinforcement Active Learning
Image Classification with Deep Reinforcement Active Learning
Mingyuan Jiu
Xuguang Song
H. Sahbi
Shupan Li
Yan Chen
Wei Guo
Lihua Guo
Mingliang Xu
VLM
56
1
0
31 Dec 2024
Towards Simple and Provable Parameter-Free Adaptive Gradient Methods
Towards Simple and Provable Parameter-Free Adaptive Gradient Methods
Yuanzhe Tao
Huizhuo Yuan
Xun Zhou
Yuan Cao
Q. Gu
ODL
66
0
0
27 Dec 2024
High-Dimensional Bayesian Optimization via Random Projection of Manifold
  Subspaces
High-Dimensional Bayesian Optimization via Random Projection of Manifold Subspaces
Quoc-Anh Hoang Nguyen
The Hung Tran
122
2
0
21 Dec 2024
Uncertainty separation via ensemble quantile regression
Uncertainty separation via ensemble quantile regression
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
UDUQCV
127
0
0
18 Dec 2024
Task Diversity in Bayesian Federated Learning: Simultaneous Processing
  of Classification and Regression
Task Diversity in Bayesian Federated Learning: Simultaneous Processing of Classification and Regression
Junliang Lyu
Yixuan Zhang
Xiaoling Lu
Feng Zhou
FedML
139
1
0
14 Dec 2024
DKMGP: A Gaussian Process Approach to Multi-Task and Multi-Step Vehicle
  Dynamics Modeling in Autonomous Racing
DKMGP: A Gaussian Process Approach to Multi-Task and Multi-Step Vehicle Dynamics Modeling in Autonomous Racing
Jingyun Ning
Madhur Behl
157
0
0
20 Nov 2024
Inversion-based Latent Bayesian Optimization
Inversion-based Latent Bayesian Optimization
Jaewon Chu
Jinyoung Park
Seunghun Lee
H. Kim
BDL
37
4
0
08 Nov 2024
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
99
0
0
07 Nov 2024
Deep Q-Exponential Processes
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
69
0
0
29 Oct 2024
Likelihood approximations via Gaussian approximate inference
Likelihood approximations via Gaussian approximate inference
Thang D. Bui
66
0
0
28 Oct 2024
Practical Bayesian Algorithm Execution via Posterior Sampling
Practical Bayesian Algorithm Execution via Posterior Sampling
Chu Xin Cheng
Raul Astudillo
Thomas Desautels
Yisong Yue
67
0
0
27 Oct 2024
A Causal Graph-Enhanced Gaussian Process Regression for Modeling
  Engine-out NOx
A Causal Graph-Enhanced Gaussian Process Regression for Modeling Engine-out NOx
Shrenik Zinage
Ilias Bilionis
Peter Meckl
41
0
0
24 Oct 2024
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
MF-LAL: Drug Compound Generation Using Multi-Fidelity Latent Space Active Learning
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
125
0
0
15 Oct 2024
A resource-efficient model for deep kernel learning
A resource-efficient model for deep kernel learning
Luisa DÁmore
41
0
0
13 Oct 2024
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
  Machines
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
57
0
0
08 Oct 2024
Federated Neural Nonparametric Point Processes
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
105
0
0
08 Oct 2024
Online scalable Gaussian processes with conformal prediction for
  guaranteed coverage
Online scalable Gaussian processes with conformal prediction for guaranteed coverage
Jinwen Xu
Qin Lu
G. Giannakis
52
1
0
07 Oct 2024
Nonstationary Sparse Spectral Permanental Process
Nonstationary Sparse Spectral Permanental Process
Zicheng Sun
Yixuan Zhang
Zenan Ling
Xuhui Fan
Feng Zhou
50
0
0
04 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
110
0
0
04 Oct 2024
Measurements with Noise: Bayesian Optimization for Co-optimizing Noise
  and Property Discovery in Automated Experiments
Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments
Boris N. Slautin
Yu Liu
Jan Dec
Vladimir V. Shvartsman
Doru C. Lupascu
M. Ziatdinov
Sergei V. Kalinin
108
0
0
03 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDLUQCV
127
0
0
02 Oct 2024
End-to-End Conformal Calibration for Optimization Under Uncertainty
End-to-End Conformal Calibration for Optimization Under Uncertainty
Christopher Yeh
Nicolas H. Christianson
Alan Wu
Adam Wierman
Yisong Yue
116
5
0
30 Sep 2024
SANE: Strategic Autonomous Non-Smooth Exploration for Multiple Optima
  Discovery in Multi-modal and Non-differentiable Black-box Functions
SANE: Strategic Autonomous Non-Smooth Exploration for Multiple Optima Discovery in Multi-modal and Non-differentiable Black-box Functions
Arpan Biswas
Rama Vasudevan
Rohit Pant
Ichiro Takeuchi
Hiroshi Funakubo
Yongtao Liu
94
0
0
18 Sep 2024
Learning Representations for Independence Testing
Learning Representations for Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
103
0
0
10 Sep 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
61
0
0
07 Aug 2024
Few-shot Scooping Under Domain Shift via Simulated Maximal Deployment
  Gaps
Few-shot Scooping Under Domain Shift via Simulated Maximal Deployment Gaps
Yifan Zhu
Pranay Thangeda
Erica Tevere
Ashish Goel
Erik Kramer
Hari Nayar
Melkior Ornik
Kris K. Hauser
74
0
0
06 Aug 2024
1234...91011
Next