ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Communities
  3. ...

Neighbor communities

0 / 0 papers shown
Title
Top Contributors
Name# Papers# Citations
Social Events
DateLocationEvent
  1. Home
  2. Communities
  3. DRL

Disentangled Representation Learning

DRL
More data

Disentangled Representations are representations in machine learning where different factors of variation in the data are separated into distinct components. This allows for better interpretability and control over the learned representations, making them useful for tasks like generative modeling and transfer learning.

Neighbor communities

51015

Featured Papers

0 / 0 papers shown
Title

All papers

50 / 2,244 papers shown
Title
Scalable Formal Verification via Autoencoder Latent Space Abstraction
Scalable Formal Verification via Autoencoder Latent Space Abstraction
Robert Reed
Luca Laurenti
Morteza Lahijanian
DRL
94
0
0
15 Dec 2025
Disentangled and Distilled Encoder for Out-of-Distribution Reasoning with Rademacher Guarantees
Disentangled and Distilled Encoder for Out-of-Distribution Reasoning with Rademacher Guarantees
Zahra Rahiminasab
Michael Yuhas
Arvind Easwaran
DRLOODDCoGe
160
0
0
11 Dec 2025
Vector Quantization using Gaussian Variational Autoencoder
Vector Quantization using Gaussian Variational Autoencoder
Tongda Xu
Wendi Zheng
Jiajun He
Jose Miguel Hernandez-Lobato
Yan Wang
Ya-Qin Zhang
Jie Tang
DRLBDLMQ
177
0
0
07 Dec 2025
Learning Group Actions In Disentangled Latent Image Representations
Learning Group Actions In Disentangled Latent Image Representations
Farhana Hossain Swarnali
Miaomiao Zhang
Tonmoy Hossain
DRL
159
0
0
03 Dec 2025
SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows
SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows
Qinyu Zhao
Guangting Zheng
Tao Yang
Rui Zhu
Xingjian Leng
Stephen Gould
Liang Zheng
DRL
68
0
0
03 Dec 2025
Adaptive sampling using variational autoencoder and reinforcement learning
Adaptive sampling using variational autoencoder and reinforcement learning
Adil Rasheed
Mikael Aleksander Jansen Shahly
Muhammad Faisal Aftab
DRL
216
0
0
03 Dec 2025
Learning Reduced Representations for Quantum Classifiers
Patrick Odagiu
Vasilis Belis
Lennart Schulze
Panagiotis Barkoutsos
Michele Grossi
Florentin Reiter
Günther Dissertori
Ivano Tavernelli
Sofia Vallecorsa
DRL
165
0
0
01 Dec 2025
Physically Interpretable Representation Learning with Gaussian Mixture Variational AutoEncoder (GM-VAE)
Physically Interpretable Representation Learning with Gaussian Mixture Variational AutoEncoder (GM-VAE)
Tiffany Fan
Murray Cutforth
Marta DÉlia
Alexandre Cortiella
Alireza Doostan
Eric Darve
DRL
134
0
0
26 Nov 2025
Complex variational autoencoders admit Kähler structure
Complex variational autoencoders admit Kähler structure
Andrew Gracyk
DRL
340
0
0
19 Nov 2025
Tensor Gauge Flow Models
Tensor Gauge Flow Models
Alexander Strunk
Roland Assam
DRL
152
0
0
18 Nov 2025
Structured Contrastive Learning for Interpretable Latent Representations
Structured Contrastive Learning for Interpretable Latent Representations
Zhengyang Shen
Hua Tu
Mayue Shi
DRL
136
0
0
18 Nov 2025
A Disentangled Low-Rank RNN Framework for Uncovering Neural Connectivity and Dynamics
A Disentangled Low-Rank RNN Framework for Uncovering Neural Connectivity and Dynamics
Chengrui Li
Yunmiao Wang
Yule Wang
Weihan Li
Dieter Jaeger
Anqi Wu
DRL
208
0
0
17 Nov 2025
DIVIDE: A Framework for Learning from Independent Multi-Mechanism Data Using Deep Encoders and Gaussian Processes
DIVIDE: A Framework for Learning from Independent Multi-Mechanism Data Using Deep Encoders and Gaussian Processes
Vivek Chawla
B. Slautin
Utkarsh Pratiush
Dayakar Penumadu
Sergei V. Kalinin
DRL
124
0
0
16 Nov 2025
Inferring response times of perceptual decisions with Poisson variational autoencoders
Inferring response times of perceptual decisions with Poisson variational autoencoders
Hayden R. Johnson
Anastasia N. Krouglova
Hadi Vafaii
Jacob L. Yates
P. J. Gonçalves
DRLBDL
332
0
0
14 Nov 2025
What We Don't C: Representations for scientific discovery beyond VAEs
What We Don't C: Representations for scientific discovery beyond VAEs
Brian Rogers
Micah Bowles
Chris J. Lintott
S. Croft
DRL
333
0
0
12 Nov 2025
On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
On the Joint Minimization of Regularization Loss Functions in Deep Variational Bayesian Methods for Attribute-Controlled Symbolic Music Generation
Matteo Pettenó
Alessandro Ilic Mezza
Alberto Bernardini
DRL
196
0
0
10 Nov 2025
Physically-Grounded Goal Imagination: Physics-Informed Variational Autoencoder for Self-Supervised Reinforcement Learning
Physically-Grounded Goal Imagination: Physics-Informed Variational Autoencoder for Self-Supervised Reinforcement Learning
Lan Thi Ha Nguyen
Kien Ton Manh
Anh Do Duc
Nam Pham Hai
DRLSSLAI4CE
373
0
0
10 Nov 2025
Multivariate Variational Autoencoder
Multivariate Variational Autoencoder
Mehmet Can Yavuz
DRLBDL
233
0
0
08 Nov 2025
Variational Autoencoder for Calibration: A New Approach
Variational Autoencoder for Calibration: A New ApproachInternational Instrumentation and Measurement Technology Conference (I2MTC), 2025
Travis Barrett
Amit Kumar Mishra
Joyce Mwangama
DRL
293
0
0
01 Nov 2025
An unsupervised tour through the hidden pathways of deep neural networks
An unsupervised tour through the hidden pathways of deep neural networks
Diego Doimo
DRLOODSSLBDL
405
0
0
24 Oct 2025
Disentangled Representation Learning via Modular Compositional Bias
Disentangled Representation Learning via Modular Compositional Bias
Whie Jung
Dong Hoon Lee
Seunghoon Hong
DRLOCLCoGe
561
0
0
24 Oct 2025
Generalised Flow Maps for Few-Step Generative Modelling on Riemannian Manifolds
Generalised Flow Maps for Few-Step Generative Modelling on Riemannian Manifolds
Oscar Davis
M. S. Albergo
Nicholas M. Boffi
Michael Bronstein
A. Bose
DRLAI4CE
199
0
0
24 Oct 2025
IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks
IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial NetworksAAAI Conference on Artificial Intelligence (AAAI), 2021
Insu Jeon
Wonkwang Lee
Myeongjang Pyeon
Gunhee Kim
DRLGAN
238
42
0
23 Oct 2025
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Veranika Boukun
Jörg Lücke
DRLCoGe
193
0
0
17 Oct 2025
VCTR: A Transformer-Based Model for Non-parallel Voice Conversion
VCTR: A Transformer-Based Model for Non-parallel Voice Conversion
Maharnab Saikia
DRLViT
144
0
0
14 Oct 2025
Sculpting Latent Spaces With MMD: Disentanglement With Programmable Priors
Sculpting Latent Spaces With MMD: Disentanglement With Programmable Priors
Quentin Fruytier
Akshay Malhotra
Shahab Hamidi-Rad
Aditya Sant
Aryan Mokhtari
Sujay Sanghavi
DRLBDL
177
0
0
13 Oct 2025
Controllable Generative Trajectory Prediction via Weak Preference Alignment
Controllable Generative Trajectory Prediction via Weak Preference Alignment
Yongxi Cao
J. Schumann
Jens Kober
Joni Pajarinen
Arkady Zgonnikov
DRL
175
0
0
12 Oct 2025
HiBBO: HiPPO-based Space Consistency for High-dimensional Bayesian Optimisation
HiBBO: HiPPO-based Space Consistency for High-dimensional Bayesian Optimisation
Junyu Xuan
Wenlong Chen
Yingzhen Li
DRLBDL
172
0
0
10 Oct 2025
Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Randall Balestriero
Nicolas Ballas
Mike Rabbat
Yann LeCun
DRL
169
1
0
07 Oct 2025
Superposition disentanglement of neural representations reveals hidden alignment
Superposition disentanglement of neural representations reveals hidden alignment
André Longon
David Klindt
Meenakshi Khosla
DRL
270
0
0
03 Oct 2025
Posterior Collapse as a Phase Transition in Variational Autoencoders
Posterior Collapse as a Phase Transition in Variational Autoencoders
Zhen Li
Fan Zhang
Z. Zhang
Y. Chen
DRL
288
0
0
02 Oct 2025
Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders
Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders
B. Slautin
Kamyar Barakati
Hiroshi Funakubo
M. Ziatdinov
Vladimir V. Shvartsman
Doru C. Lupascu
Sergei V. Kalinin
DRL
136
0
0
30 Sep 2025
Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Amirhossein Zare
Amirhessam Zare
Parmida Sadat Pezeshki
Herlock
Rahimi
Ali Ebrahimi
Ignacio Vázquez-García
Leo Anthony Celi
DRL
381
0
0
29 Sep 2025
Defining latent spaces by example: optimisation over the outputs of generative models
Defining latent spaces by example: optimisation over the outputs of generative models
Samuel Willis
Alexandru I. Stere
Dragos D. Margineantu
Henry T. Oldroyd
John A. Fozard
Carl Henrik Ek
Henry Moss
Erik Bodin
DRLDiffM
123
0
0
28 Sep 2025
Emotional Styles Hide in Deep Speaker Embeddings: Disentangle Deep Speaker Embeddings for Speaker Clustering
Emotional Styles Hide in Deep Speaker Embeddings: Disentangle Deep Speaker Embeddings for Speaker Clustering
Chaohao Lin
Xu Zheng
Kaida Wu
Peihao Xiang
Ou Bai
DRL
113
0
0
27 Sep 2025
Analysis of Variational Sparse Autoencoders
Analysis of Variational Sparse Autoencoders
Zachary Baker
Yuxiao Li
DRL
239
0
0
26 Sep 2025
IndiSeek learns information-guided disentangled representations
IndiSeek learns information-guided disentangled representations
Yu Gui
Cong Ma
Zongming Ma
DRL
331
0
0
25 Sep 2025
Beyond Visual Similarity: Rule-Guided Multimodal Clustering with explicit domain rules
Beyond Visual Similarity: Rule-Guided Multimodal Clustering with explicit domain rules
Kishor Datta Gupta
Mohd Ariful Haque
Marufa Kamal
Ahmed Rafi Hasan
M. Rahman
Roy George
DRL
153
0
0
24 Sep 2025
Ensemble Visualization With Variational Autoencoder
Ensemble Visualization With Variational Autoencoder
Cenyang Wu
Qinhan Yu
Liang Zhou
DRLBDL
181
0
0
16 Sep 2025
Deep Generative and Discriminative Digital Twin endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Deep Generative and Discriminative Digital Twin endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Eric Guiffo Kaigom
DRLAI4CE
147
0
0
16 Sep 2025
Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
Carlos Celemin
Joseph Brennan
Pierluigi Vito Amadori
Tim Bradley
SSLDRL
146
0
0
15 Sep 2025
Variational Rank Reduction Autoencoders for Generative
Variational Rank Reduction Autoencoders for Generative
Alicia Tierz
Jad Mounayer
B. Moya
Francisco Chinesta
DRLAI4CE
156
1
0
10 Sep 2025
Natural Latents: Latent Variables Stable Across Ontologies
Natural Latents: Latent Variables Stable Across Ontologies
John Wentworth
David Lorell
DRL
120
0
0
04 Sep 2025
Conditional-$t^3$VAE: Equitable Latent Space Allocation for Fair Generation
Conditional-t3t^3t3VAE: Equitable Latent Space Allocation for Fair Generation
Aymene Mohammed Bouayed
Samuel Deslauriers-Gauthier
Adrian Iaccovelli
D. Naccache
DRLCML
145
0
0
02 Sep 2025
Disentangled Multi-Context Meta-Learning: Unlocking robust and Generalized Task Learning
Disentangled Multi-Context Meta-Learning: Unlocking robust and Generalized Task Learning
Seonsoo Kim
Jun-Gill Kang
Taehong Kim
Seongil Hong
DRLOOD
110
0
0
01 Sep 2025
Rapid Mismatch Estimation via Neural Network Informed Variational Inference
Rapid Mismatch Estimation via Neural Network Informed Variational Inference
Mateusz Jaszczuk
Nadia Figueroa
DRL
148
0
0
28 Aug 2025
Class Incremental Continual Learning with Self-Organizing Maps and Variational Autoencoders Using Synthetic Replay
Class Incremental Continual Learning with Self-Organizing Maps and Variational Autoencoders Using Synthetic Replay
Pujan Thapa
Alexander Ororbia
Travis J. Desell
DRLCLL
176
0
0
28 Aug 2025
Biologically Disentangled Multi-Omic Modeling Reveals Mechanistic Insights into Pan-Cancer Immunotherapy Resistance
Biologically Disentangled Multi-Omic Modeling Reveals Mechanistic Insights into Pan-Cancer Immunotherapy Resistance
Ifrah Tariq
Ernest Fraenkel
DRL
156
0
0
26 Aug 2025
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Samuel Stocksieker
Denys Pommeret
Arthur Charpentier
DRL
120
0
0
19 Aug 2025
Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Hyunsoo Song
S. T. Kim
Seungkyu Lee
DRLAAML
165
0
0
17 Aug 2025
Loading #Papers per Month with "DRL"
Past speakers
Name (-)
Top Contributors
Name (-)
Top Organizations at ResearchTrend.AI
Name (-)
Social Events
DateLocationEvent
No social events available