ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Communities
  3. ...

Neighbor communities

0 / 0 papers shown
Title
Top Contributors
Name# Papers# Citations
Social Events
DateLocationEvent
  1. Home
  2. Communities
  3. DRL

Disentangled Representation Learning

DRL
More data

Disentangled Representations are representations in machine learning where different factors of variation in the data are separated into distinct components. This allows for better interpretability and control over the learned representations, making them useful for tasks like generative modeling and transfer learning.

Neighbor communities

51015

Featured Papers

0 / 0 papers shown
Title

All papers

50 / 2,225 papers shown
Title
Generalised Flow Maps for Few-Step Generative Modelling on Riemannian Manifolds
Generalised Flow Maps for Few-Step Generative Modelling on Riemannian Manifolds
Oscar Davis
M. S. Albergo
Nicholas M. Boffi
Michael Bronstein
A. Bose
DRLAI4CE
12
0
0
24 Oct 2025
Disentangled Representation Learning via Modular Compositional Bias
Disentangled Representation Learning via Modular Compositional Bias
Whie Jung
Dong Hoon Lee
Seunghoon Hong
DRLOCLCoGe
64
0
0
24 Oct 2025
An unsupervised tour through the hidden pathways of deep neural networks
An unsupervised tour through the hidden pathways of deep neural networks
Diego Doimo
DRLOODSSLBDL
91
0
0
24 Oct 2025
IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks
IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial NetworksAAAI Conference on Artificial Intelligence (AAAI), 2021
Insu Jeon
Wonkwang Lee
Myeongjang Pyeon
Gunhee Kim
DRLGAN
60
42
0
23 Oct 2025
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Disentanglement of Sources in a Multi-Stream Variational Autoencoder
Veranika Boukun
Jörg Lücke
DRLCoGe
56
0
0
17 Oct 2025
VCTR: A Transformer-Based Model for Non-parallel Voice Conversion
VCTR: A Transformer-Based Model for Non-parallel Voice Conversion
Maharnab Saikia
DRLViT
44
0
0
14 Oct 2025
Sculpting Latent Spaces With MMD: Disentanglement With Programmable Priors
Sculpting Latent Spaces With MMD: Disentanglement With Programmable Priors
Quentin Fruytier
Akshay Malhotra
Shahab Hamidi-Rad
Aditya Sant
Aryan Mokhtari
Sujay Sanghavi
DRLBDL
53
0
0
13 Oct 2025
Controllable Generative Trajectory Prediction via Weak Preference Alignment
Controllable Generative Trajectory Prediction via Weak Preference Alignment
Yongxi Cao
J. Schumann
Jens Kober
Joni Pajarinen
Arkady Zgonnikov
DRL
48
0
0
12 Oct 2025
HiBBO: HiPPO-based Space Consistency for High-dimensional Bayesian Optimisation
HiBBO: HiPPO-based Space Consistency for High-dimensional Bayesian Optimisation
Junyu Xuan
Wenlong Chen
Yingzhen Li
DRLBDL
36
0
0
10 Oct 2025
Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Randall Balestriero
Nicolas Ballas
Mike Rabbat
Yann LeCun
DRL
62
0
0
07 Oct 2025
Superposition disentanglement of neural representations reveals hidden alignment
Superposition disentanglement of neural representations reveals hidden alignment
André Longon
David Klindt
Meenakshi Khosla
DRL
68
0
0
03 Oct 2025
Posterior Collapse as a Phase Transition in Variational Autoencoders
Posterior Collapse as a Phase Transition in Variational Autoencoders
Zhen Li
Fan Zhang
Z. Zhang
Y. Chen
DRL
40
0
0
02 Oct 2025
Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders
Reward driven discovery of the optimal microstructure representations with invariant variational autoencoders
B. Slautin
Kamyar Barakati
Hiroshi Funakubo
M. Ziatdinov
Vladimir V. Shvartsman
Doru C. Lupascu
Sergei V. Kalinin
DRL
4
0
0
30 Sep 2025
Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Amirhossein Zare
Amirhessam Zare
Parmida Sadat Pezeshki
Herlock
Rahimi
Ali Ebrahimi
Ignacio Vázquez-García
Leo Anthony Celi
DRL
92
0
0
29 Sep 2025
Define latent spaces by example: optimisation over the outputs of generative models
Define latent spaces by example: optimisation over the outputs of generative models
Samuel Willis
Alexandru I. Stere
Dragos D. Margineantu
Henry T. Oldroyd
John A. Fozard
Carl Henrik Ek
Henry Moss
Erik Bodin
DRLDiffM
8
0
0
28 Sep 2025
Emotional Styles Hide in Deep Speaker Embeddings: Disentangle Deep Speaker Embeddings for Speaker Clustering
Emotional Styles Hide in Deep Speaker Embeddings: Disentangle Deep Speaker Embeddings for Speaker Clustering
Chaohao Lin
Xu Zheng
Kaida Wu
Peihao Xiang
Ou Bai
DRL
32
0
0
27 Sep 2025
Analysis of Variational Sparse Autoencoders
Analysis of Variational Sparse Autoencoders
Zachary Baker
Yuxiao Li
DRL
74
0
0
26 Sep 2025
IndiSeek learns information-guided disentangled representations
IndiSeek learns information-guided disentangled representations
Yu Gui
Cong Ma
Zongming Ma
DRL
88
0
0
25 Sep 2025
Beyond Visual Similarity: Rule-Guided Multimodal Clustering with explicit domain rules
Beyond Visual Similarity: Rule-Guided Multimodal Clustering with explicit domain rules
Kishor Datta Gupta
Mohd Ariful Haque
Marufa Kamal
Ahmed Rafi Hasan
M. Rahman
Roy George
DRL
45
0
0
24 Sep 2025
Deep Generative and Discriminative Digital Twin endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Deep Generative and Discriminative Digital Twin endowed with Variational Autoencoder for Unsupervised Predictive Thermal Condition Monitoring of Physical Robots in Industry 6.0 and Society 6.0
Eric Guiffo Kaigom
DRLAI4CE
60
0
0
16 Sep 2025
Ensemble Visualization With Variational Autoencoder
Ensemble Visualization With Variational Autoencoder
Cenyang Wu
Qinhan Yu
Liang Zhou
DRLBDL
45
0
0
16 Sep 2025
Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
Carlos Celemin
Joseph Brennan
Pierluigi Vito Amadori
Tim Bradley
SSLDRL
58
0
0
15 Sep 2025
Variational Rank Reduction Autoencoders for Generative
Variational Rank Reduction Autoencoders for Generative
Alicia Tierz
Jad Mounayer
B. Moya
Francisco Chinesta
DRLAI4CE
72
0
0
10 Sep 2025
Natural Latents: Latent Variables Stable Across Ontologies
Natural Latents: Latent Variables Stable Across Ontologies
John Wentworth
David Lorell
DRL
28
0
0
04 Sep 2025
Conditional-$t^3$VAE: Equitable Latent Space Allocation for Fair Generation
Conditional-t3t^3t3VAE: Equitable Latent Space Allocation for Fair Generation
Aymene Mohammed Bouayed
Samuel Deslauriers-Gauthier
Adrian Iaccovelli
D. Naccache
DRLCML
76
0
0
02 Sep 2025
Disentangled Multi-Context Meta-Learning: Unlocking robust and Generalized Task Learning
Disentangled Multi-Context Meta-Learning: Unlocking robust and Generalized Task Learning
Seonsoo Kim
Jun-Gill Kang
Taehong Kim
Seongil Hong
DRLOOD
21
0
0
01 Sep 2025
Rapid Mismatch Estimation via Neural Network Informed Variational Inference
Rapid Mismatch Estimation via Neural Network Informed Variational Inference
Mateusz Jaszczuk
Nadia Figueroa
DRL
48
0
0
28 Aug 2025
Class Incremental Continual Learning with Self-Organizing Maps and Variational Autoencoders Using Synthetic Replay
Class Incremental Continual Learning with Self-Organizing Maps and Variational Autoencoders Using Synthetic Replay
Pujan Thapa
Alexander Ororbia
Travis J. Desell
DRLCLL
88
0
0
28 Aug 2025
Biologically Disentangled Multi-Omic Modeling Reveals Mechanistic Insights into Pan-Cancer Immunotherapy Resistance
Biologically Disentangled Multi-Omic Modeling Reveals Mechanistic Insights into Pan-Cancer Immunotherapy Resistance
Ifrah Tariq
Ernest Fraenkel
DRL
44
0
0
26 Aug 2025
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Samuel Stocksieker
Denys Pommeret
Arthur Charpentier
DRL
60
0
0
19 Aug 2025
Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Hyunsoo Song
S. T. Kim
Seungkyu Lee
DRLAAML
60
0
0
17 Aug 2025
VARAN: Variational Inference for Self-Supervised Speech Models Fine-Tuning on Downstream Tasks
VARAN: Variational Inference for Self-Supervised Speech Models Fine-Tuning on Downstream Tasks
Daria Diatlova
Nikita Balagansky
Alexander Varlamov
Egor Spirin
DRL
40
0
0
16 Aug 2025
Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Ruiyu Zhang
Ce Zhao
Xin Zhao
Lin Nie
Wai-Fung Lam
DRLCMLCoGe
80
0
0
08 Aug 2025
SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models
SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models
Pingchuan Ma
Xiaopei Yang
Yusong Li
Ming Gui
Felix Krause
Johannes Schusterbauer
Bjorn Ommer
DRL
72
0
0
05 Aug 2025
Zero-Variance Gradients for Variational Autoencoders
Zero-Variance Gradients for Variational Autoencoders
Zilei Shao
Anji Liu
Karen Ullrich
DRL
46
0
0
05 Aug 2025
M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Chuan He
Yongchao Liu
Qiang Li
Wenliang Zhong
Chuntao Hong
Xinwei Yao
DRL
58
0
0
01 Aug 2025
DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning
DeepJIVE: Learning Joint and Individual Variation Explained from Multimodal Data Using Deep Learning
Matthew Drexler
Benjamin Risk
J. Lah
Suprateek Kundu
Deqiang Qiu
DRL
28
0
0
25 Jul 2025
OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Nicolas Pinon
Carole Lartizien
DRLOOD
63
0
0
25 Jul 2025
From Points to Spheres: A Geometric Reinterpretation of Variational Autoencoders
From Points to Spheres: A Geometric Reinterpretation of Variational Autoencoders
Songxuan Shi
DRL
120
0
0
23 Jul 2025
GeoHNNs: Geometric Hamiltonian Neural Networks
GeoHNNs: Geometric Hamiltonian Neural Networks
Amine Mohamed Aboussalah
Abdessalam Ed-dib
DRLPINNAI4CE
48
1
0
21 Jul 2025
Cluster Contrast for Unsupervised Visual Representation Learning
Cluster Contrast for Unsupervised Visual Representation LearningInternational Conference on Information Photonics (ICIP), 2025
Nikolaos Giakoumoglou
Tania Stathaki
SSLDRL
25
0
0
16 Jul 2025
CosmoFlow: Scale-Aware Representation Learning for Cosmology with Flow Matching
CosmoFlow: Scale-Aware Representation Learning for Cosmology with Flow Matching
Sidharth Kannan
Tian Qiu
Carolina Cuesta-Lazaro
Haewon Jeong
DRL
16
0
0
16 Jul 2025
Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
Alessandro Palma
Sergei Rybakov
Leon Hetzel
Stephan Günnemann
Fabian J. Theis
DRL
11
1
0
15 Jul 2025
Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational AutoencodersAnnual Conference on Medical Image Understanding and Analysis (MIUA), 2025
Benjamin Keel
Aaron Quyn
David Jayne
Maryam Mohsin
Samuel D. Relton
DRL
26
0
0
15 Jul 2025
CoVAE: Consistency Training of Variational Autoencoders
CoVAE: Consistency Training of Variational Autoencoders
Gianluigi Silvestri
Luca Ambrogioni
DiffMDRL
94
1
0
12 Jul 2025
Optimization Guarantees for Square-Root Natural-Gradient Variational Inference
Optimization Guarantees for Square-Root Natural-Gradient Variational Inference
Navish Kumar
Thomas Möllenhoff
Mohammad Emtiyaz Khan
Aurelien Lucchi
DRL
29
0
0
10 Jul 2025
MGVQ: Could VQ-VAE Beat VAE? A Generalizable Tokenizer with Multi-group Quantization
MGVQ: Could VQ-VAE Beat VAE? A Generalizable Tokenizer with Multi-group Quantization
Mingkai Jia
Wei Yin
Xiaotao Hu
Jiaxin Guo
Xiaoyang Guo
Qian Zhang
Xiao-Xiao Long
Ping Tan
DRLMQ
57
1
0
10 Jul 2025
Denoising Multi-Beta VAE: Representation Learning for Disentanglement and Generation
Denoising Multi-Beta VAE: Representation Learning for Disentanglement and Generation
Anshuk Uppal
Yuhta Takida
Chieh-Hsin Lai
Yuki Mitsufuji
DiffMDRL
59
2
0
09 Jul 2025
Intervening to learn and compose disentangled representations
Intervening to learn and compose disentangled representations
Alex Markham
Jeri A. Chang
Isaac Hirsch
Liam Solus
Bryon Aragam
DRL
13
0
0
07 Jul 2025
Return of the Latent Space COWBOYS: Re-thinking the use of VAEs for Bayesian Optimisation of Structured Spaces
Return of the Latent Space COWBOYS: Re-thinking the use of VAEs for Bayesian Optimisation of Structured Spaces
Henry B. Moss
Sebastian W. Ober
Tom Diethe
DRLBDLCML
30
2
0
05 Jul 2025
Loading #Papers per Month with "DRL"
Past speakers
Name (-)
Top Contributors
Name (-)
Top Organizations at ResearchTrend.AI
Name (-)
Social Events
DateLocationEvent
No social events available