13
0

Guiding Neural Network Initialization via Marginal Likelihood Maximization

Abstract

We propose a simple, data-driven approach to help guide hyperparameter selection for neural network initialization. We leverage the relationship between neural network and Gaussian process models having corresponding activation and covariance functions to infer the hyperparameter values desirable for model initialization. Our experiment shows that marginal likelihood maximization provides recommendations that yield near-optimal prediction performance on MNIST classification task under experiment constraints. Furthermore, our empirical results indicate consistency in the proposed technique, suggesting that computation cost for the procedure could be significantly reduced with smaller training sets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.