Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 504 papers shown
Title
Fast Deep Mixtures of Gaussian Process Experts
Clement Etienam
K. Law
S. Wade
Vitaly Zankin
60
2
0
11 Jun 2020
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
32
0
0
11 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
83
26
0
09 Jun 2020
Physics Informed Deep Kernel Learning
Ziyi Wang
Wei W. Xing
Robert M. Kirby
Shandian Zhe
PINN
63
10
0
08 Jun 2020
Optimal Transport Graph Neural Networks
Benson Chen
Gary Bécigneul
O. Ganea
Regina Barzilay
Tommi Jaakkola
OT
94
44
0
08 Jun 2020
Longitudinal Deep Kernel Gaussian Process Regression
Junjie Liang
Yanting Wu
Dongkuan Xu
Vasant Honavar
BDL
21
8
0
24 May 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
114
31
0
22 May 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
62
3
0
03 Apr 2020
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Sayan Ghosh
Piyush Pandita
Steven Atkinson
W. Subber
Yiming Zhang
Natarajan Chennimalai-Kumar
S. Chakrabarti
Liping Wang
AI4CE
39
30
0
26 Mar 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
76
36
0
23 Mar 2020
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
Zhidi Lin
Yue Xu
Qinglei Kong
Deshi Li
Sergios Theodoridis
Shuguang Cui
Cui
FedML
142
4
0
08 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
47
0
0
06 Mar 2020
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDL
UQCV
160
34
0
02 Mar 2020
Convolutional Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
BDL
29
5
0
28 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
90
290
0
24 Feb 2020
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
102
7
0
22 Feb 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
92
189
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
35
5
0
19 Feb 2020
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
74
21
0
19 Feb 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
97
61
0
19 Feb 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
93
127
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
58
5
0
07 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
86
98
0
06 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
130
165
0
03 Feb 2020
The Case for Bayesian Deep Learning
A. Wilson
UQCV
BDL
OOD
132
114
0
29 Jan 2020
Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders
Mohammad Golbabaee
Guido Bounincontri
Carolin M. Pirkl
Marion I. Menzel
Bjoern Menze
Mike Davies
Pedro A. Gómez
MedIm
50
5
0
23 Jan 2020
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDL
OOD
UQCV
97
34
0
22 Jan 2020
Stepwise Model Selection for Sequence Prediction via Deep Kernel Learning
Yao Zhang
Daniel Jarrett
M. Schaar
72
9
0
12 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
144
52
0
31 Dec 2019
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
65
27
0
30 Dec 2019
Learning to Impute: A General Framework for Semi-supervised Learning
Wei-Hong Li
Chuan-Sheng Foo
Hakan Bilen
SSL
73
10
0
22 Dec 2019
Totally Deep Support Vector Machines
H. Sahbi
32
2
0
12 Dec 2019
MetaFun: Meta-Learning with Iterative Functional Updates
Jin Xu
Jean-François Ton
Hyunjik Kim
Adam R. Kosiorek
Yee Whye Teh
75
68
0
05 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDL
FedML
30
0
0
02 Dec 2019
Deep Networks with Adaptive Nyström Approximation
Luc Giffon
Stéphane Ayache
Thierry Artières
Hachem Kadri
44
3
0
29 Nov 2019
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety Constraints
Sam Daulton
Shaun Singh
Vashist Avadhanula
Drew Dimmery
E. Bakshy
71
13
0
02 Nov 2019
Function-Space Distributions over Kernels
Gregory W. Benton
Wesley J. Maddox
Jayson Salkey
J. Albinati
A. Wilson
BDL
GP
53
26
0
29 Oct 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
168
202
0
28 Oct 2019
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
88
14
0
19 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
81
38
0
17 Oct 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
56
5
0
16 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
75
93
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
44
8
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
66
9
0
12 Oct 2019
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
BDL
84
19
0
11 Oct 2019
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Kevin J. Liang
Guoyin Wang
Yitong Li
Ricardo Henao
Lawrence Carin
66
2
0
09 Oct 2019
Deep Kernel Learning via Random Fourier Features
Jiaxuan Xie
Fanghui Liu
Kaijie Wang
Xiaolin Huang
46
19
0
07 Oct 2019
Deep Message Passing on Sets
Yifeng Shi
Junier Oliva
Marc Niethammer
PINN
38
9
0
21 Sep 2019
Previous
1
2
3
...
10
11
7
8
9
Next