ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Fast Deep Mixtures of Gaussian Process Experts
Fast Deep Mixtures of Gaussian Process Experts
Clement Etienam
K. Law
S. Wade
Vitaly Zankin
60
2
0
11 Jun 2020
Revisiting Explicit Regularization in Neural Networks for
  Well-Calibrated Predictive Uncertainty
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDLUQCV
32
0
0
11 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
83
26
0
09 Jun 2020
Physics Informed Deep Kernel Learning
Physics Informed Deep Kernel Learning
Ziyi Wang
Wei W. Xing
Robert M. Kirby
Shandian Zhe
PINN
63
10
0
08 Jun 2020
Optimal Transport Graph Neural Networks
Optimal Transport Graph Neural Networks
Benson Chen
Gary Bécigneul
O. Ganea
Regina Barzilay
Tommi Jaakkola
OT
94
44
0
08 Jun 2020
Longitudinal Deep Kernel Gaussian Process Regression
Longitudinal Deep Kernel Gaussian Process Regression
Junjie Liang
Yanting Wu
Dongkuan Xu
Vasant Honavar
BDL
21
8
0
24 May 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
114
31
0
22 May 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
62
3
0
03 Apr 2020
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Sayan Ghosh
Piyush Pandita
Steven Atkinson
W. Subber
Yiming Zhang
Natarajan Chennimalai-Kumar
S. Chakrabarti
Liping Wang
AI4CE
39
30
0
26 Mar 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in
  Electronic Health Records
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDLUQCV
76
36
0
23 Mar 2020
FedLoc: Federated Learning Framework for Data-Driven Cooperative
  Localization and Location Data Processing
FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing
Feng Yin
Zhidi Lin
Yue Xu
Qinglei Kong
Deshi Li
Sergios Theodoridis
Shuguang Cui
Cui
FedML
142
4
0
08 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCVBDL
47
0
0
06 Mar 2020
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDLUQCV
160
34
0
02 Mar 2020
Convolutional Spectral Kernel Learning
Convolutional Spectral Kernel Learning
Jian Li
Yong Liu
Weiping Wang
BDL
29
5
0
28 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
90
290
0
24 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
102
7
0
22 Feb 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
92
189
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian
  Processes
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
35
5
0
19 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
74
21
0
19 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCVBDL
97
61
0
19 Feb 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
93
127
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
58
5
0
07 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
  Process: A New Insight into Machine Learning Applications
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
86
98
0
06 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
130
165
0
03 Feb 2020
The Case for Bayesian Deep Learning
The Case for Bayesian Deep Learning
A. Wilson
UQCVBDLOOD
132
114
0
29 Jan 2020
Compressive MRI quantification using convex spatiotemporal priors and
  deep auto-encoders
Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders
Mohammad Golbabaee
Guido Bounincontri
Carolin M. Pirkl
Marion I. Menzel
Bjoern Menze
Mike Davies
Pedro A. Gómez
MedIm
50
5
0
23 Jan 2020
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDLOODUQCV
97
34
0
22 Jan 2020
Stepwise Model Selection for Sequence Prediction via Deep Kernel
  Learning
Stepwise Model Selection for Sequence Prediction via Deep Kernel Learning
Yao Zhang
Daniel Jarrett
M. Schaar
72
9
0
12 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
144
52
0
31 Dec 2019
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
65
27
0
30 Dec 2019
Learning to Impute: A General Framework for Semi-supervised Learning
Learning to Impute: A General Framework for Semi-supervised Learning
Wei-Hong Li
Chuan-Sheng Foo
Hakan Bilen
SSL
73
10
0
22 Dec 2019
Totally Deep Support Vector Machines
Totally Deep Support Vector Machines
H. Sahbi
32
2
0
12 Dec 2019
MetaFun: Meta-Learning with Iterative Functional Updates
MetaFun: Meta-Learning with Iterative Functional Updates
Jin Xu
Jean-François Ton
Hyunjik Kim
Adam R. Kosiorek
Yee Whye Teh
75
68
0
05 Dec 2019
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Implicit Priors for Knowledge Sharing in Bayesian Neural Networks
Jack K. Fitzsimons
Sebastian M. Schmon
Stephen J. Roberts
BDLFedML
30
0
0
02 Dec 2019
Deep Networks with Adaptive Nyström Approximation
Deep Networks with Adaptive Nyström Approximation
Luc Giffon
Stéphane Ayache
Thierry Artières
Hachem Kadri
44
3
0
29 Nov 2019
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety
  Constraints
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety Constraints
Sam Daulton
Shaun Singh
Vashist Avadhanula
Drew Dimmery
E. Bakshy
71
13
0
02 Nov 2019
Function-Space Distributions over Kernels
Function-Space Distributions over Kernels
Gregory W. Benton
Wesley J. Maddox
Jayson Salkey
J. Albinati
A. Wilson
BDLGP
53
26
0
29 Oct 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
168
202
0
28 Oct 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
88
14
0
19 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDLAI4TS
81
38
0
17 Oct 2019
Parametric Gaussian Process Regressors
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
56
5
0
16 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
75
93
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDLUQCV
44
8
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
66
9
0
12 Oct 2019
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola
Jack Turner
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
BDL
84
19
0
11 Oct 2019
Kernel-Based Approaches for Sequence Modeling: Connections to Neural
  Methods
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Kevin J. Liang
Guoyin Wang
Yitong Li
Ricardo Henao
Lawrence Carin
66
2
0
09 Oct 2019
Deep Kernel Learning via Random Fourier Features
Deep Kernel Learning via Random Fourier Features
Jiaxuan Xie
Fanghui Liu
Kaijie Wang
Xiaolin Huang
46
19
0
07 Oct 2019
Deep Message Passing on Sets
Deep Message Passing on Sets
Yifeng Shi
Junier Oliva
Marc Niethammer
PINN
38
9
0
21 Sep 2019
Previous
123...1011789
Next