ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
    BDL
ArXivPDFHTML

Papers citing "Deep Kernel Learning"

50 / 174 papers shown
Title
Fast Adaptation with Linearized Neural Networks
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
32
32
0
02 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
204
81
0
16 Feb 2021
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Few-Shot Bayesian Optimization with Deep Kernel Surrogates
Martin Wistuba
Josif Grabocka
BDL
37
68
0
19 Jan 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
19
11
0
18 Jan 2021
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
25
18
0
25 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
28
34
0
03 Nov 2020
Are wider nets better given the same number of parameters?
Are wider nets better given the same number of parameters?
A. Golubeva
Behnam Neyshabur
Guy Gur-Ari
27
44
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
21
25
0
26 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
19
26
0
22 Oct 2020
Few-shot Learning for Spatial Regression
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
30
11
0
09 Oct 2020
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
  Programmed Deep Kernels
Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic Programmed Deep Kernels
Alexander Lavin
BDL
MedIm
8
9
0
16 Sep 2020
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
30
4
0
21 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
26
3
0
15 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
20
31
0
22 May 2020
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks
Fast Predictive Uncertainty for Classification with Bayesian Deep Networks
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
BDL
UQCV
76
31
0
02 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
Arthur Gretton
Danica J. Sutherland
19
176
0
21 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
22
21
0
19 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
17
23
0
10 Feb 2020
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
  Process: A New Insight into Machine Learning Applications
Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications
Yun Yuan
X. Yang
Zhao Zhang
Shandian Zhe
AI4CE
34
95
0
06 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
14
158
0
03 Feb 2020
Compressive MRI quantification using convex spatiotemporal priors and
  deep auto-encoders
Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders
Mohammad Golbabaee
Guido Bounincontri
Carolin M. Pirkl
Marion I. Menzel
Bjoern H. Menze
Mike Davies
Pedro A. Gómez
MedIm
29
5
0
23 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
33
51
0
31 Dec 2019
Randomly Projected Additive Gaussian Processes for Regression
Randomly Projected Additive Gaussian Processes for Regression
Ian A. Delbridge
D. Bindel
A. Wilson
24
27
0
30 Dec 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
191
0
28 Oct 2019
Neural Spectrum Alignment: Empirical Study
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
29
14
0
19 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
27
38
0
17 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
16
9
0
12 Oct 2019
Kernel-Based Approaches for Sequence Modeling: Connections to Neural
  Methods
Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods
Kevin J Liang
Guoyin Wang
Yitong Li
Ricardo Henao
Lawrence Carin
30
2
0
09 Oct 2019
Deep Kernel Learning via Random Fourier Features
Deep Kernel Learning via Random Fourier Features
Jiaxuan Xie
Fanghui Liu
Kaijie Wang
Xiaolin Huang
9
18
0
07 Oct 2019
Deep Kernel Learning for Clustering
Deep Kernel Learning for Clustering
Chieh-Tsai Wu
Zulqarnain Khan
Yale Chang
Stratis Ioannidis
Jennifer Dy
100
13
0
09 Aug 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
142
0
17 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
29
0
0
03 Jul 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
27
3
0
31 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
24
29
0
28 May 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GAN
BDL
26
9
0
14 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
901
0
26 Apr 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
8
225
0
19 Mar 2019
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian
  Process Approach
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach
Minyoung Kim
Pritish Sahu
Behnam Gholami
Vladimir Pavlovic
OOD
6
45
0
23 Feb 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDL
FedML
MLT
11
29
0
23 Jan 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
42
429
0
17 Jan 2019
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
23
66
0
15 Dec 2018
Previous
1234
Next