ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Modeling groundwater levels in California's Central Valley by
  hierarchical Gaussian process and neural network regression
Modeling groundwater levels in California's Central Valley by hierarchical Gaussian process and neural network regression
Anshuman Pradhan
Kyra H Adams
Venkat Chandrasekaran
Zhen Liu
J. Reager
Andrew M. Stuart
M. Turmon
36
0
0
23 Oct 2023
Thin and Deep Gaussian Processes
Thin and Deep Gaussian Processes
Daniel Augusto R. M. A. de Souza
Alexander Nikitin
S. T. John
Magnus Ross
Mauricio A. Alvarez
M. Deisenroth
Joao P. P. Gomes
Diego Mesquita
C. L. C. Mattos
80
5
0
17 Oct 2023
Revisiting Logistic-softmax Likelihood in Bayesian Meta-Learning for
  Few-Shot Classification
Revisiting Logistic-softmax Likelihood in Bayesian Meta-Learning for Few-Shot Classification
Tianjun Ke
Haoqun Cao
Zenan Ling
Feng Zhou
UQCV
64
8
0
16 Oct 2023
Integration-free Training for Spatio-temporal Multimodal Covariate Deep
  Kernel Point Processes
Integration-free Training for Spatio-temporal Multimodal Covariate Deep Kernel Point Processes
Yixuan Zhang
Quyu Kong
Feng Zhou
44
4
0
09 Oct 2023
Enhancing Kernel Flexibility via Learning Asymmetric Locally-Adaptive
  Kernels
Enhancing Kernel Flexibility via Learning Asymmetric Locally-Adaptive Kernels
Fan He
Ming-qian He
Lei Shi
Xiaolin Huang
Johan A. K. Suykens
59
1
0
08 Oct 2023
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced
  Transformer Deep kernels
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels
Alexander Shmakov
Avisek Naug
Vineet Gundecha
Sahand Ghorbanpour
Ricardo Luna Gutierrez
Ashwin Ramesh Babu
Antonio Guillen-Perez
Soumyendu Sarkar
101
11
0
05 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDLAAML
103
20
0
28 Sep 2023
Learning Invariant Representations with a Nonparametric Nadaraya-Watson
  Head
Learning Invariant Representations with a Nonparametric Nadaraya-Watson Head
Alan Q. Wang
Minh Nguyen
M. Sabuncu
CMLOOD
89
1
0
23 Sep 2023
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian
  Processes
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes
M. Noack
Hengrui Luo
M. Risser
GP
104
13
0
18 Sep 2023
Convolutional Deep Kernel Machines
Convolutional Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
BDL
96
5
0
18 Sep 2023
To Predict or to Reject: Causal Effect Estimation with Uncertainty on
  Networked Data
To Predict or to Reject: Causal Effect Estimation with Uncertainty on Networked Data
Hechuan Wen
Tong Chen
Li Kheng Chai
S. Sadiq
Kai Zheng
Hongzhi Yin
CML
89
2
0
15 Sep 2023
Promises of Deep Kernel Learning for Control Synthesis
Promises of Deep Kernel Learning for Control Synthesis
Robert Reed
Luca Laurenti
Morteza Lahijanian
BDL
52
5
0
12 Sep 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational
  Deep Kernel Learning
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
76
4
0
08 Sep 2023
Exploring the Efficacy of Statistical and Deep Learning Methods for
  Large Spatial Datasets: A Case Study
Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study
A. Hazra
Pratik Nag
Rishikesh Yadav
Ying Sun
61
4
0
10 Aug 2023
Kernelised Normalising Flows
Kernelised Normalising Flows
Eshant English
Matthias Kirchler
C. Lippert
TPM
95
0
0
27 Jul 2023
TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023
TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023
Yu. V. Gorishniy
Ivan Rubachev
Nikolay Kartashev
Daniil Shlenskii
Akim Kotelnikov
Artem Babenko
OODLMTD
85
15
0
26 Jul 2023
A comparison of machine learning surrogate models of street-scale
  flooding in Norfolk, Virginia
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
55
4
0
26 Jul 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas Desautels
Yuxin Chen
82
7
0
25 Jul 2023
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
  Emulation
FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation
S. Bouabid
Dino Sejdinovic
D. Watson‐Parris
61
5
0
14 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
90
1
0
03 Jul 2023
Density Uncertainty Layers for Reliable Uncertainty Estimation
Density Uncertainty Layers for Reliable Uncertainty Estimation
Yookoon Park
David M. Blei
UQCVBDL
53
2
0
21 Jun 2023
Multi-Fidelity Active Learning with GFlowNets
Multi-Fidelity Active Learning with GFlowNets
Alex Hernandez-Garcia
Nikita Saxena
Moksh Jain
Cheng-Hao Liu
Yoshua Bengio
AI4CE
86
15
0
20 Jun 2023
Practical Equivariances via Relational Conditional Neural Processes
Practical Equivariances via Relational Conditional Neural Processes
Daolang Huang
Manuel Haussmann
Ulpu Remes
S. T. John
Grégoire Clarté
K. Luck
Samuel Kaski
Luigi Acerbi
BDL
150
9
0
19 Jun 2023
Collapsed Inference for Bayesian Deep Learning
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng
Guy Van den Broeck
FedMLBDLUQCV
126
9
0
16 Jun 2023
Adaptive Robotic Information Gathering via Non-Stationary Gaussian
  Processes
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
96
10
0
02 Jun 2023
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
65
2
0
01 Jun 2023
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Y. Li
Tim G. J. Rudner
A. Wilson
BDL
97
34
0
31 May 2023
Neural Kernel Surface Reconstruction
Neural Kernel Surface Reconstruction
Jiahui Huang
Zan Gojcic
Matan Atzmon
Or Litany
Sanja Fidler
Francis Williams
3DV
102
74
0
31 May 2023
NicePIM: Design Space Exploration for Processing-In-Memory DNN
  Accelerators with 3D-Stacked-DRAM
NicePIM: Design Space Exploration for Processing-In-Memory DNN Accelerators with 3D-Stacked-DRAM
Junpeng Wang
Mengke Ge
Bo Ding
Qi Xu
Song Chen
Yi Kang
47
6
0
30 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDLUQCV
109
1
0
26 May 2023
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
155
8
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse Protein Folding Using Deep Bayesian Optimization
Natalie Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
95
3
0
25 May 2023
Deep Pipeline Embeddings for AutoML
Deep Pipeline Embeddings for AutoML
Sebastian Pineda Arango
Josif Grabocka
112
2
0
23 May 2023
Physics Inspired Approaches To Understanding Gaussian Processes
Physics Inspired Approaches To Understanding Gaussian Processes
Maximilian P. Niroomand
L. Dicks
Edward O. Pyzer-Knapp
D. Wales
72
1
0
18 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
80
18
0
08 May 2023
Gaussian process deconvolution
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
70
5
0
08 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
116
81
0
07 May 2023
Hyperparameter Optimization through Neural Network Partitioning
Hyperparameter Optimization through Neural Network Partitioning
Bruno Mlodozeniec
M. Reisser
Christos Louizos
96
8
0
28 Apr 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian
  Processes
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
64
0
0
27 Apr 2023
Experience-Based Evolutionary Algorithms for Expensive Optimization
Experience-Based Evolutionary Algorithms for Expensive Optimization
Xunzhao Yu
Yan Wang
Ling Zhu
Dimitar Filev
Xin Yao
66
2
0
09 Apr 2023
Biological Sequence Kernels with Guaranteed Flexibility
Biological Sequence Kernels with Guaranteed Flexibility
Alan N. Amin
Eli N. Weinstein
D. Marks
80
4
0
06 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
54
2
0
05 Apr 2023
A dynamic Bayesian optimized active recommender system for
  curiosity-driven Human-in-the-loop automated experiments
A dynamic Bayesian optimized active recommender system for curiosity-driven Human-in-the-loop automated experiments
Arpan Biswas
Yongtao Liu
Nicole Creange
Yu-Chen Liu
S. Jesse
Jan-Chi Yang
Sergei V. Kalinin
M. Ziatdinov
Rama K Vasudevan
93
5
0
05 Apr 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSLUQCVBDL
98
10
0
04 Apr 2023
On Mitigating the Utility-Loss in Differentially Private Learning: A new
  Perspective by a Geometrically Inspired Kernel Approach
On Mitigating the Utility-Loss in Differentially Private Learning: A new Perspective by a Geometrically Inspired Kernel Approach
Mohit Kumar
Bernhard A. Moser
Lukas Fischer
73
3
0
03 Apr 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian
  Processes
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes
Yifan Chen
H. Owhadi
F. Schafer
96
31
0
03 Apr 2023
Deep Ranking Ensembles for Hyperparameter Optimization
Deep Ranking Ensembles for Hyperparameter Optimization
Abdus Salam Khazi
Sebastian Pineda Arango
Josif Grabocka
BDL
85
7
0
27 Mar 2023
Deep Kernel Methods Learn Better: From Cards to Process Optimization
Deep Kernel Methods Learn Better: From Cards to Process Optimization
Mani Valleti
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
36
9
0
25 Mar 2023
Learning a Depth Covariance Function
Learning a Depth Covariance Function
Eric Dexheimer
Andrew J. Davison
MDE
105
15
0
21 Mar 2023
Domain-knowledge Inspired Pseudo Supervision (DIPS) for Unsupervised
  Image-to-Image Translation Models to Support Cross-Domain Classification
Domain-knowledge Inspired Pseudo Supervision (DIPS) for Unsupervised Image-to-Image Translation Models to Support Cross-Domain Classification
Firas Al-Hindawi
M. R. Siddiquee
Teresa Wu
Hang-Rui Hu
Ying Sun
54
5
0
18 Mar 2023
Previous
123456...91011
Next