ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2009.04614
49
9
v1v2v3v4v5 (latest)

End-to-end Kernel Learning via Generative Random Fourier Features

10 September 2020
Kun Fang
Fanghui Liu
Xiaolin Huang
Jie Yang
ArXiv (abs)PDFHTML
Abstract

Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learning the optimal feature map is often formulated as a target alignment problem, which aims to align the learned kernel with the pre-defined target kernel (usually the ideal kernel). In the second-stage process, a linear learner is conducted with respect to the mapped random features. Nevertheless, the pre-defined kernel in target alignment is not necessarily optimal for the generalization of the linear learner. Instead, in this paper, we consider a one-stage process that incorporates the kernel learning and linear learner into a unifying framework. To be specific, a generative network via RFFs is devised to implicitly learn the kernel, followed by a linear classifier parameterized as a full-connected layer. Then the generative network and the classifier are jointly trained by solving the empirical risk minimization (ERM) problem to reach a one-stage solution. This end-to-end scheme naturally allows deeper features, in correspondence to a multi-layer structure, and shows superior generalization performance over the classical two-stage, RFFs-based methods in real-world classification tasks. Moreover, inspired by the randomized resampling mechanism of the proposed method, its enhanced adversarial robustness is investigated and experimentally verified.

View on arXiv
Comments on this paper