Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.02222
Cited By
Deep Kernel Learning
6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Kernel Learning"
50 / 504 papers shown
Title
Bayesian Active Learning for Semantic Segmentation
Sima Didari
Wenjun Hu
Jae Oh Woo
Heng Hao
Hankyu Moon
Seungjai Min
125
1
0
03 Aug 2024
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
107
7
0
30 Jul 2024
Bayesian meta learning for trustworthy uncertainty quantification
Zhenyuan Yuan
Thinh T. Doan
UQCV
87
0
0
27 Jul 2024
Online Drift Detection with Maximum Concept Discrepancy
Ke Wan
Yi Liang
Susik Yoon
107
3
0
07 Jul 2024
Geometrically Inspired Kernel Machines for Collaborative Learning Beyond Gradient Descent
Mohit Kumar
Alexander Valentinitsch
Magdalena Fuchs
Mathias Brucker
Juliana Bowles
Adnan Husaković
Ali Abbas
Bernhard A. Moser
109
0
0
05 Jul 2024
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta
Jonathan Lorraine
Steve Masson
Ramanathan Arunachalam
Zaid Pervaiz Bhat
James Lucas
Arun George Zachariah
107
4
0
26 Jun 2024
OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models
Hersh Sanghvi
Spencer Folk
Camillo J Taylor
94
3
0
25 Jun 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
468
3
0
05 Jun 2024
Stein Random Feature Regression
Houston Warren
Rafael Oliveira
Fabio Ramos
BDL
102
0
0
01 Jun 2024
Streamflow Prediction with Uncertainty Quantification for Water Management: A Constrained Reasoning and Learning Approach
Mohammed Amine Gharsallaoui
Bhupinderjeet Singh
Supriya Savalkar
Aryan Deshwal
Yan Yan
Ananth Kalyanaraman
Kirti Rajagopalan
J. Doppa
AI4CE
65
1
0
31 May 2024
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
55
1
0
30 May 2024
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation
Dong Bok Lee
Aoxuan Silvia Zhang
Byung-Hoon Kim
Junhyeon Park
Juho Lee
Sung Ju Hwang
Haebeom Lee
108
2
0
28 May 2024
Infinite-Dimensional Feature Interaction
Chenhui Xu
Fuxun Yu
Maoliang Li
Zihao Zheng
Zirui Xu
Jinjun Xiong
Xiang Chen
98
1
0
22 May 2024
Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks
Francesco Zanetta
D. Nerini
Matteo Buzzi
Henry Moss
63
0
0
21 May 2024
Integration of Scanning Probe Microscope with High-Performance Computing: fixed-policy and reward-driven workflows implementation
Yu Liu
Utkarsh Pratiush
Jason Bemis
R. Proksch
Reece Emery
...
Yu-Chen Liu
Jan-Chi Yang
Stanislav Udovenko
Susan E. Trolier-McKinstry
Sergei V. Kalinin
26
6
0
20 May 2024
Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data
Maxim Ziatdinov
AI4CE
73
4
0
16 May 2024
Spectral complexity of deep neural networks
Simmaco Di Lillo
Domenico Marinucci
Michele Salvi
Stefano Vigogna
BDL
171
2
0
15 May 2024
No-Regret Learning of Nash Equilibrium for Black-Box Games via Gaussian Processes
Minbiao Han
Fengxue Zhang
Yuxin Chen
68
4
0
14 May 2024
The Role of Predictive Uncertainty and Diversity in Embodied AI and Robot Learning
Ransalu Senanayake
96
9
0
06 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
101
0
0
02 May 2024
Bayesian Co-navigation: Dynamic Designing of the Materials Digital Twins via Active Learning
B. Slautin
Yongtao Liu
Hiroshi Funakubo
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
56
7
0
19 Apr 2024
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
146
34
0
17 Apr 2024
Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data
Nils Lehmann
N. Gottschling
Stefan Depeweg
Eric T. Nalisnick
86
1
0
12 Apr 2024
Bayesian Exploration of Pre-trained Models for Low-shot Image Classification
Yibo Miao
Yu Lei
Feng Zhou
Zhijie Deng
VLM
UQCV
BDL
101
3
0
30 Mar 2024
Workload Estimation for Unknown Tasks: A Survey of Machine Learning Under Distribution Shift
Josh Bhagat Smith
Julie A. Adams
101
0
0
20 Mar 2024
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
106
3
0
13 Mar 2024
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
Petar M. Djurić
123
2
0
11 Mar 2024
A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Filippo Bigi
Sanggyu Chong
Michele Ceriotti
Federico Grasselli
75
6
0
04 Mar 2024
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Ruijia Niu
D. Wu
Kai Kim
Yi-An Ma
D. Watson‐Parris
Rose Yu
AI4CE
85
4
0
29 Feb 2024
Diffusion Models as Constrained Samplers for Optimization with Unknown Constraints
Lingkai Kong
Yuanqi Du
Wenhao Mu
Kirill Neklyudov
Valentin De Bortol
...
D. Wu
Aaron Ferber
Yi-An Ma
Carla P. Gomes
Chao Zhang
82
13
0
28 Feb 2024
MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in Practical Generative Modeling
Peter Eckmann
D. Wu
G. Heinzelmann
Michael K. Gilson
Rose Yu
AI4CE
74
4
0
16 Feb 2024
Attention as Robust Representation for Time Series Forecasting
Peisong Niu
Tian Zhou
Xue Wang
Liang Sun
Rong Jin
AI4TS
63
5
0
08 Feb 2024
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?
Agustinus Kristiadi
Felix Strieth-Kalthoff
Marta Skreta
Pascal Poupart
Alán Aspuru-Guzik
Geoff Pleiss
87
23
0
07 Feb 2024
A General Theory for Kernel Packets: from state space model to compactly supported basis
Liang Ding
Rui Tuo
34
1
0
06 Feb 2024
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning
Idan Achituve
I. Diamant
Arnon Netzer
Gal Chechik
Ethan Fetaya
UQCV
92
7
0
06 Feb 2024
Large Language Models to Enhance Bayesian Optimization
Tennison Liu
Nicolás Astorga
Nabeel Seedat
M. Schaar
156
59
0
06 Feb 2024
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
90
0
0
06 Feb 2024
Kernel PCA for Out-of-Distribution Detection
Kun Fang
Qinghua Tao
Kexin Lv
Mingzhen He
Xiaolin Huang
Jie Yang
OODD
126
4
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
139
35
0
01 Feb 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
129
3
0
16 Jan 2024
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
87
9
0
29 Dec 2023
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
UQCV
34
0
0
29 Dec 2023
Amortized Reparametrization: Efficient and Scalable Variational Inference for Latent SDEs
Kevin Course
P. Nair
94
3
0
16 Dec 2023
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Tomoharu Iwata
Atsutoshi Kumagai
BDL
UQCV
76
1
0
13 Dec 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
75
2
0
21 Nov 2023
Deep Bayesian Reinforcement Learning for Spacecraft Proximity Maneuvers and Docking
Desong Du
Naiming Qi
Yanfang Liu
Wei Pan
64
0
0
07 Nov 2023
Joint Composite Latent Space Bayesian Optimization
Natalie Maus
Zhiyuan Jerry Lin
Maximilian Balandat
E. Bakshy
BDL
99
2
0
03 Nov 2023
Advancing Bayesian Optimization via Learning Correlated Latent Space
Seunghun Lee
Jaewon Chu
S. Kim
Juyeon Ko
Hyunwoo J. Kim
BDL
134
8
0
31 Oct 2023
Clairvoyance: A Pipeline Toolkit for Medical Time Series
Daniel Jarrett
Jinsung Yoon
Ioana Bica
Zhaozhi Qian
A. Ercole
M. Schaar
AI4TS
87
36
0
28 Oct 2023
Policy Gradient with Kernel Quadrature
Satoshi Hayakawa
Tetsuro Morimura
OffRL
BDL
99
1
0
23 Oct 2023
Previous
1
2
3
4
5
...
9
10
11
Next