ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric P. Xing
    BDL
ArXivPDFHTML

Papers citing "Deep Kernel Learning"

50 / 174 papers shown
Title
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
43
7
0
14 Nov 2022
Uncertainty Quantification for Atlas-Level Cell Type Transfer
Uncertainty Quantification for Atlas-Level Cell Type Transfer
J. Engelmann
Leon Hetzel
Giovanni Palla
L. Sikkema
Malte D. Luecken
Fabian J. Theis
27
3
0
07 Nov 2022
Optimizing Closed-Loop Performance with Data from Similar Systems: A
  Bayesian Meta-Learning Approach
Optimizing Closed-Loop Performance with Data from Similar Systems: A Bayesian Meta-Learning Approach
Ankush Chakrabarty
24
9
0
31 Oct 2022
Structural Kernel Search via Bayesian Optimization and Symbolical
  Optimal Transport
Structural Kernel Search via Bayesian Optimization and Symbolical Optimal Transport
M. Bitzer
Mona Meister
Christoph Zimmer
12
9
0
21 Oct 2022
Locally Smoothed Gaussian Process Regression
Locally Smoothed Gaussian Process Regression
Davit Gogolashvili
B. Kozyrskiy
Maurizio Filippone
30
8
0
18 Oct 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
21
4
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
L. Yao
BDL
76
24
0
01 Sep 2022
Algorithmic Differentiation for Automated Modeling of Machine Learned
  Force Fields
Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields
Niklas Schmitz
Klaus-Robert Muller
Stefan Chmiela
AI4CE
21
11
0
25 Aug 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
23
0
0
24 Aug 2022
Doubly Deformable Aggregation of Covariance Matrices for Few-shot
  Segmentation
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
Zhitong Xiong
Haopeng Li
Xiao Xiang Zhu
42
35
0
30 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Integrating Random Effects in Deep Neural Networks
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDL
AI4CE
35
21
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
Split personalities in Bayesian Neural Networks: the case for full
  marginalisation
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
25
1
0
23 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
177
35
0
20 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed
  Torque Control
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
11
3
0
10 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
27
18
0
30 Apr 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
18
10
0
02 Mar 2022
E-LMC: Extended Linear Model of Coregionalization for Spatial Field
  Prediction
E-LMC: Extended Linear Model of Coregionalization for Spatial Field Prediction
Shihong Wang
Xueying Zhang
Yichen Meng
W. Xing
20
1
0
01 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
39
44
0
22 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
29
3
0
30 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
55
69
0
28 Jan 2022
A Kernel-Expanded Stochastic Neural Network
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
20
5
0
14 Jan 2022
Neural Fields as Learnable Kernels for 3D Reconstruction
Neural Fields as Learnable Kernels for 3D Reconstruction
Francis Williams
Zan Gojcic
S. Khamis
Denis Zorin
Joan Bruna
Sanja Fidler
Or Litany
50
66
0
26 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
21
8
0
10 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional
  Gaussian Processes
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Improving Hyperparameter Optimization by Planning Ahead
Improving Hyperparameter Optimization by Planning Ahead
H. Jomaa
Jonas K. Falkner
Lars Schmidt-Thieme
22
0
0
15 Oct 2021
Analysis of the first Genetic Engineering Attribution Challenge
Analysis of the first Genetic Engineering Attribution Challenge
O. Crook
K. L. Warmbrod
G. Lipstein
Christine Chung
Christopher W. Bakerlee
...
Shelly R. Holland
Jacob Swett
K. Esvelt
E. C. Alley
W. Bradshaw
18
9
0
14 Oct 2021
Dense Gaussian Processes for Few-Shot Segmentation
Dense Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
M. Felsberg
Fahad Shahbaz Khan
Martin Danelljan
61
30
0
07 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
48
21
0
20 Sep 2021
Toward a `Standard Model' of Machine Learning
Toward a `Standard Model' of Machine Learning
Zhiting Hu
Eric P. Xing
37
12
0
17 Aug 2021
BoA-PTA, A Bayesian Optimization Accelerated Error-Free SPICE Solver
BoA-PTA, A Bayesian Optimization Accelerated Error-Free SPICE Solver
W. Xing
X. Jin
Yi Liu
Dan Niu
Weisheng Zhao
Zhou Jin
16
4
0
31 Jul 2021
Stein Variational Gradient Descent with Multiple Kernel
Stein Variational Gradient Descent with Multiple Kernel
Qingzhong Ai
Shiyu Liu
Lirong He
Zenglin Xu
22
4
0
20 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
29
1
0
05 Jul 2021
Personalized Federated Learning with Gaussian Processes
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
32
99
0
29 Jun 2021
Meta-Learning Reliable Priors in the Function Space
Meta-Learning Reliable Priors in the Function Space
Jonas Rothfuss
Dominique Heyn
Jinfan Chen
Andreas Krause
40
27
0
06 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
100
17
0
23 Apr 2021
Multivariate Deep Evidential Regression
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDL
PER
EDL
UQCV
35
21
0
13 Apr 2021
Deep Gaussian Processes for Few-Shot Segmentation
Deep Gaussian Processes for Few-Shot Segmentation
Joakim Johnander
Johan Edstedt
Martin Danelljan
M. Felsberg
Fahad Shahbaz Khan
VLM
17
2
0
30 Mar 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
35
30
0
18 Mar 2021
SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
  Models
SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox Models
Zhen Lin
Cao Xiao
Lucas Glass
M. P. M. Brandon Westover
Jimeng Sun
BDL
29
11
0
05 Mar 2021
Previous
1234
Next