ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Efficient Transfer Bayesian Optimization with Auxiliary Information
Efficient Transfer Bayesian Optimization with Auxiliary Information
Tomoharu Iwata
Takuma Otsuka
69
2
0
17 Sep 2019
Deep kernel learning for integral measurements
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
69
7
0
04 Sep 2019
Transformer Dissection: A Unified Understanding of Transformer's
  Attention via the Lens of Kernel
Transformer Dissection: A Unified Understanding of Transformer's Attention via the Lens of Kernel
Yao-Hung Hubert Tsai
Shaojie Bai
M. Yamada
Louis-Philippe Morency
Ruslan Salakhutdinov
173
261
0
30 Aug 2019
Deep Kernel Learning for Clustering
Deep Kernel Learning for Clustering
Chieh-Tsai Wu
Zulqarnain Khan
Yale Chang
Stratis Ioannidis
Jennifer Dy
158
13
0
09 Aug 2019
Bayesian Batch Active Learning as Sparse Subset Approximation
Bayesian Batch Active Learning as Sparse Subset Approximation
Robert Pinsler
Jonathan Gordon
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
86
132
0
06 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
125
113
0
24 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
97
144
0
17 Jul 2019
Bayesian Optimization in Variational Latent Spaces with Dynamic
  Compression
Bayesian Optimization in Variational Latent Spaces with Dynamic Compression
Rika Antonova
Akshara Rai
Tianyu Li
Danica Kragic
DRL
120
19
0
10 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDLAI4TS
119
258
0
09 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
61
0
0
03 Jul 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
82
77
0
19 Jun 2019
Robust Regression for Safe Exploration in Control
Robust Regression for Safe Exploration in Control
Anqi Liu
Guanya Shi
Soon-Jo Chung
Anima Anandkumar
Yisong Yue
92
60
0
13 Jun 2019
Coupled Variational Recurrent Collaborative Filtering
Coupled Variational Recurrent Collaborative Filtering
Qingquan Song
Shiyu Chang
Helen Zhou
BDL
41
9
0
11 Jun 2019
Deep Compositional Spatial Models
Deep Compositional Spatial Models
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
126
57
0
06 Jun 2019
Noise Contrastive Meta-Learning for Conditional Density Estimation using
  Kernel Mean Embeddings
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings
Jean-François Ton
Lucian Chan
Yee Whye Teh
Dino Sejdinovic
71
13
0
05 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual
  Estimation with an I/O Kernel
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
90
54
0
03 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCVBDL
58
3
0
31 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
98
29
0
28 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
49
18
0
27 May 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
84
19
0
27 May 2019
Learning spectrograms with convolutional spectral kernels
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
64
9
0
23 May 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GANBDL
68
9
0
14 May 2019
A Survey on Neural Architecture Search
A Survey on Neural Architecture Search
Martin Wistuba
Ambrish Rawat
Tejaswini Pedapati
AI4CE
100
259
0
04 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
283
928
0
26 Apr 2019
Meta-Learning surrogate models for sequential decision making
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDLOffRL
95
25
0
28 Mar 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
64
231
0
19 Mar 2019
Implicit Kernel Learning
Implicit Kernel Learning
Chun-Liang Li
Wei-Cheng Chang
Youssef Mroueh
Yiming Yang
Barnabás Póczós
VLM
74
42
0
26 Feb 2019
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian
  Process Approach
Unsupervised Visual Domain Adaptation: A Deep Max-Margin Gaussian Process Approach
Minyoung Kim
Pritish Sahu
Behnam Gholami
Vladimir Pavlovic
OOD
70
47
0
23 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
204
289
0
13 Feb 2019
Learnable Embedding Space for Efficient Neural Architecture Compression
Learnable Embedding Space for Efficient Neural Architecture Compression
Shengcao Cao
Xiaofang Wang
Kris Kitani
89
43
0
01 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
73
187
0
31 Jan 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDLFedMLMLT
117
29
0
23 Jan 2019
Kernel Change-point Detection with Auxiliary Deep Generative Models
Kernel Change-point Detection with Auxiliary Deep Generative Models
Wei-Cheng Chang
Chun-Liang Li
Yiming Yang
Barnabás Póczós
101
71
0
18 Jan 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
112
442
0
17 Jan 2019
Cascaded Coarse-to-Fine Deep Kernel Networks for Efficient Satellite
  Image Change Detection
Cascaded Coarse-to-Fine Deep Kernel Networks for Efficient Satellite Image Change Detection
H. Sahbi
28
0
0
21 Dec 2018
Extending classical surrogate modelling to high-dimensions through
  supervised dimensionality reduction: a data-driven approach
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
45
67
0
15 Dec 2018
Supervised Deep Kriging for Single-Image Super-Resolution
Supervised Deep Kriging for Single-Image Super-Resolution
Gianni Franchi
Angela Yao
A. Kolb
SupR
37
5
0
10 Dec 2018
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
50
9
0
27 Nov 2018
Learning deep kernels for exponential family densities
Learning deep kernels for exponential family densities
W. Li
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
BDL
103
74
0
20 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
75
26
0
03 Nov 2018
Change Surfaces for Expressive Multidimensional Changepoints and
  Counterfactual Prediction
Change Surfaces for Expressive Multidimensional Changepoints and Counterfactual Prediction
William Herlands
Daniel B. Neill
H. Nickisch
A. Wilson
OOD
62
2
0
28 Oct 2018
Gaussian Process Prior Variational Autoencoders
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDLCML
75
139
0
28 Oct 2018
Hyperparameter Learning via Distributional Transfer
Hyperparameter Learning via Distributional Transfer
H. Law
P. Zhao
Lucian Chan
Junzhou Huang
Dino Sejdinovic
85
25
0
15 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
125
310
0
11 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
90
42
0
09 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
91
61
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
151
1,106
0
28 Sep 2018
A kernel-based approach to molecular conformation analysis
A kernel-based approach to molecular conformation analysis
Stefan Klus
A. Bittracher
Ingmar Schuster
Christof Schütte
55
26
0
28 Sep 2018
Discretely Relaxing Continuous Variables for tractable Variational
  Inference
Discretely Relaxing Continuous Variables for tractable Variational Inference
Trefor W. Evans
P. Nair
BDL
57
0
0
12 Sep 2018
Learning Data-adaptive Nonparametric Kernels
Learning Data-adaptive Nonparametric Kernels
Fanghui Liu
Xiaolin Huang
Chen Gong
Jie Yang
Li Li
83
18
0
31 Aug 2018
Previous
123...101189
Next