ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,043 papers shown
Title
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Bat-Sheva Einbinder
Yaniv Romano
Matteo Sesia
Yanfei Zhou
UQCV
34
49
0
12 May 2022
Affective Medical Estimation and Decision Making via Visualized Learning
  and Deep Learning
Affective Medical Estimation and Decision Making via Visualized Learning and Deep Learning
M. Eslami
Solale Tabarestani
Ehsan Adeli
G. Elwyn
T. Elze
Mengyu Wang
Nazlee Zebardast
Nassir Navab
M. Adjouadi
16
0
0
09 May 2022
A Survey on Uncertainty Toolkits for Deep Learning
A Survey on Uncertainty Toolkits for Deep Learning
Maximilian Pintz
Joachim Sicking
Maximilian Poretschkin
Maram Akila
ELM
36
6
0
02 May 2022
Simple Techniques Work Surprisingly Well for Neural Network Test
  Prioritization and Active Learning (Replicability Study)
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Michael Weiss
Paolo Tonella
AAML
18
50
0
02 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
28
48
0
01 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
24
5
0
30 Apr 2022
Tailored Uncertainty Estimation for Deep Learning Systems
Tailored Uncertainty Estimation for Deep Learning Systems
Joachim Sicking
Maram Akila
Jan David Schneider
Fabian Hüger
Peter Schlicht
Tim Wirtz
Stefan Wrobel
UQCV
29
1
0
29 Apr 2022
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
Matias Valdenegro-Toro
Daniel Saromo
UD
PER
BDL
UQCV
22
77
0
20 Apr 2022
Towards Fine-grained Causal Reasoning and QA
Towards Fine-grained Causal Reasoning and QA
Linyi Yang
Zhen Wang
Yuxiang Wu
Jie Yang
Yue Zhang
41
15
0
15 Apr 2022
A high-resolution canopy height model of the Earth
A high-resolution canopy height model of the Earth
Nico Lang
W. Jetz
Konrad Schindler
Jan Dirk Wegner
32
261
0
13 Apr 2022
A Comparative Analysis of Decision-Level Fusion for Multimodal Driver
  Behaviour Understanding
A Comparative Analysis of Decision-Level Fusion for Multimodal Driver Behaviour Understanding
Alina Roitberg
Kunyu Peng
Zdravko Marinov
C. Seibold
David Schneider
Rainer Stiefelhagen
17
17
0
10 Apr 2022
Is my Driver Observation Model Overconfident? Input-guided Calibration
  Networks for Reliable and Interpretable Confidence Estimates
Is my Driver Observation Model Overconfident? Input-guided Calibration Networks for Reliable and Interpretable Confidence Estimates
Alina Roitberg
Kunyu Peng
David Schneider
Kailun Yang
Marios Koulakis
Manuel Martínez
Rainer Stiefelhagen
UQCV
30
9
0
10 Apr 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
  Neural Network Calibration
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
25
42
0
25 Mar 2022
Learning Confidence for Transformer-based Neural Machine Translation
Learning Confidence for Transformer-based Neural Machine Translation
Yu Lu
Jiali Zeng
Jiajun Zhang
Shuangzhi Wu
Mu Li
49
9
0
22 Mar 2022
Active learning in open experimental environments: selecting the right
  information channel(s) based on predictability in deep kernel learning
Active learning in open experimental environments: selecting the right information channel(s) based on predictability in deep kernel learning
M. Ziatdinov
Yongtao Liu
Sergei V. Kalinin
22
9
0
18 Mar 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark Gales
UQCV
22
11
0
15 Mar 2022
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
Self-Normalized Density Map (SNDM) for Counting Microbiological Objects
K. Graczyk
J. Pawlowski
Sylwia Majchrowska
Tomasz Golan
28
9
0
15 Mar 2022
Igeood: An Information Geometry Approach to Out-of-Distribution
  Detection
Igeood: An Information Geometry Approach to Out-of-Distribution Detection
Eduardo Dadalto Camara Gomes
F. Alberge
Pierre Duhamel
Pablo Piantanida
OODD
28
28
0
15 Mar 2022
Uncertainty Estimation for Language Reward Models
Uncertainty Estimation for Language Reward Models
Adam Gleave
G. Irving
UQLM
42
32
0
14 Mar 2022
The worst of both worlds: A comparative analysis of errors in learning
  from data in psychology and machine learning
The worst of both worlds: A comparative analysis of errors in learning from data in psychology and machine learning
Jessica Hullman
Sayash Kapoor
Priyanka Nanayakkara
Andrew Gelman
Arvind Narayanan
35
39
0
12 Mar 2022
Model soups: averaging weights of multiple fine-tuned models improves
  accuracy without increasing inference time
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
Mitchell Wortsman
Gabriel Ilharco
S. Gadre
Rebecca Roelofs
Raphael Gontijo-Lopes
...
Hongseok Namkoong
Ali Farhadi
Y. Carmon
Simon Kornblith
Ludwig Schmidt
MoMe
59
924
1
10 Mar 2022
Sparsity-Inducing Categorical Prior Improves Robustness of the
  Information Bottleneck
Sparsity-Inducing Categorical Prior Improves Robustness of the Information Bottleneck
Anirban Samaddar
Sandeep Madireddy
Prasanna Balaprakash
Tapabrata Maiti
Gustavo de los Campos
Ian Fischer
24
1
0
04 Mar 2022
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for
  multiple uncertainty types and tasks
MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Ángel Tena
Rémi Kazmierczak
Séverine Dubuisson
Emanuel Aldea
David Filliat
UQCV
31
28
0
02 Mar 2022
Understanding the Challenges When 3D Semantic Segmentation Faces Class
  Imbalanced and OOD Data
Understanding the Challenges When 3D Semantic Segmentation Faces Class Imbalanced and OOD Data
Yancheng Pan
Fan Xie
Huijing Zhao
CVBM
36
7
0
01 Mar 2022
An Empirical Study on Explanations in Out-of-Domain Settings
An Empirical Study on Explanations in Out-of-Domain Settings
G. Chrysostomou
Nikolaos Aletras
LRM
17
27
0
28 Feb 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep
  Image Prior
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
48
10
0
28 Feb 2022
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement
  Learning
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Zhuoran Yang
Zhihong Deng
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
45
132
0
23 Feb 2022
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Laurens Sluijterman
Eric Cator
Tom Heskes
BDL
UQCV
FedML
16
2
0
22 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural
  Representations for Computed Tomography
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
37
12
0
22 Feb 2022
Deconstructing Distributions: A Pointwise Framework of Learning
Deconstructing Distributions: A Pointwise Framework of Learning
Gal Kaplun
Nikhil Ghosh
Saurabh Garg
Boaz Barak
Preetum Nakkiran
OOD
38
21
0
20 Feb 2022
Out of Distribution Data Detection Using Dropout Bayesian Neural
  Networks
Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
A. Nguyen
Fred Lu
Gary Lopez Munoz
Edward Raff
Charles K. Nicholas
James Holt
UQCV
27
21
0
18 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
44
60
0
14 Feb 2022
D2ADA: Dynamic Density-aware Active Domain Adaptation for Semantic
  Segmentation
D2ADA: Dynamic Density-aware Active Domain Adaptation for Semantic Segmentation
Tsung-Han Wu
Yi-Syuan Liou
Shaojie Yuan
Hsin-Ying Lee
Tung-I Chen
Kuan-Chih Huang
Winston H. Hsu
45
9
0
14 Feb 2022
EREBA: Black-box Energy Testing of Adaptive Neural Networks
EREBA: Black-box Energy Testing of Adaptive Neural Networks
Mirazul Haque
Yaswanth Yadlapalli
Wei Yang
Cong Liu
AAML
11
10
0
12 Feb 2022
Improving Generalization via Uncertainty Driven Perturbations
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Michael I. Jordan
Tatjana Chavdarova
AAML
AI4CE
29
4
0
11 Feb 2022
Accountability in an Algorithmic Society: Relationality, Responsibility,
  and Robustness in Machine Learning
Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning
A. Feder Cooper
Emanuel Moss
Benjamin Laufer
Helen Nissenbaum
MLAU
32
85
0
10 Feb 2022
Non-Linear Spectral Dimensionality Reduction Under Uncertainty
Non-Linear Spectral Dimensionality Reduction Under Uncertainty
Firas Laakom
Jenni Raitoharju
Nikolaos Passalis
Alexandros Iosifidis
Moncef Gabbouj
UD
15
0
0
09 Feb 2022
A Unified Prediction Framework for Signal Maps
A Unified Prediction Framework for Signal Maps
Emmanouil Alimpertis
A. Markopoulou
C. Butts
Evita Bakopoulou
Konstantinos Psounis
25
3
0
08 Feb 2022
Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
  Time-Series
Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary Time-Series
Sercan O. Arik
Nathanael Yoder
Tomas Pfister
TTA
AI4TS
16
20
0
04 Feb 2022
A Note on "Assessing Generalization of SGD via Disagreement"
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedML
UQCV
26
15
0
03 Feb 2022
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
K. Wagstaff
Thomas G. Dietterich
29
1
0
03 Feb 2022
UQGAN: A Unified Model for Uncertainty Quantification of Deep
  Classifiers trained via Conditional GANs
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
Philipp Oberdiek
G. Fink
Matthias Rottmann
OODD
45
14
0
31 Jan 2022
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Emilio Dorigatti
Jann Goschenhofer
B. Schubert
Mina Rezaei
Bernd Bischl
26
3
0
31 Jan 2022
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Joseph Gesnouin
Steve Pechberti
B. Stanciulescu
Fabien Moutarde
22
12
0
29 Jan 2022
Monitoring Model Deterioration with Explainable Uncertainty Estimation
  via Non-parametric Bootstrap
Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap
Carlos Mougan
Dan Saattrup Nielsen
31
15
0
27 Jan 2022
Improving robustness and calibration in ensembles with diversity
  regularization
Improving robustness and calibration in ensembles with diversity regularization
H. A. Mehrtens
Camila González
Anirban Mukhopadhyay
UQCV
23
7
0
26 Jan 2022
Robust uncertainty estimates with out-of-distribution pseudo-inputs
  training
Robust uncertainty estimates with out-of-distribution pseudo-inputs training
Pierre Segonne
Yevgen Zainchkovskyy
Søren Hauberg
UQCV
OOD
11
1
0
15 Jan 2022
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
Behnam Neyshabur
Hanie Sedghi
OODD
OOD
50
125
0
11 Jan 2022
SpectraNet: Learned Recognition of Artificial Satellites From High
  Contrast Spectroscopic Imagery
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery
J. Gazak
Ian McQuaid
R. Swindle
M. Phelps
Justin Fletcher
37
14
0
10 Jan 2022
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Vincent Mai
Kaustubh Mani
Liam Paull
43
34
0
05 Jan 2022
Previous
123...121314...192021
Next