ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
v1v2 (latest)

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,062 papers shown
Title
Survey of XAI in digital pathology
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
75
56
0
14 Aug 2020
Unbiased Learning for the Causal Effect of Recommendation
Unbiased Learning for the Causal Effect of Recommendation
Masahiro Sato
S. Takemori
Janmajay Singh
Tomoko Ohkuma
CMLOffRL
111
70
0
11 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
78
41
0
03 Aug 2020
Cold Posteriors and Aleatoric Uncertainty
Cold Posteriors and Aleatoric Uncertainty
Ben Adlam
Jasper Snoek
Samuel L. Smith
BDLUQCV
97
24
0
31 Jul 2020
Generative Classifiers as a Basis for Trustworthy Image Classification
Generative Classifiers as a Basis for Trustworthy Image Classification
Radek Mackowiak
Lynton Ardizzone
Ullrich Kothe
Carsten Rother
50
4
0
29 Jul 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
109
63
0
20 Jul 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
90
37
0
19 Jul 2020
Probabilistic Neighbourhood Component Analysis: Sample Efficient
  Uncertainty Estimation in Deep Learning
Probabilistic Neighbourhood Component Analysis: Sample Efficient Uncertainty Estimation in Deep Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
UQCVBDL
61
6
0
18 Jul 2020
On Robustness and Transferability of Convolutional Neural Networks
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
110
156
0
16 Jul 2020
Transferable Calibration with Lower Bias and Variance in Domain
  Adaptation
Transferable Calibration with Lower Bias and Variance in Domain Adaptation
Ximei Wang
Mingsheng Long
Jianmin Wang
Michael I. Jordan
76
54
0
16 Jul 2020
Anatomy of Catastrophic Forgetting: Hidden Representations and Task
  Semantics
Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics
V. Ramasesh
Ethan Dyer
M. Raghu
CLL
107
179
0
14 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OODBDLUQCV
93
634
0
14 Jul 2020
On uncertainty estimation in active learning for image segmentation
On uncertainty estimation in active learning for image segmentation
Bo Li
T. S. Alstrøm
UQCV
62
14
0
13 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
66
121
0
11 Jul 2020
Machine Learning Explainability for External Stakeholders
Machine Learning Explainability for External Stakeholders
Umang Bhatt
Mckane Andrus
Adrian Weller
Alice Xiang
FaMLSILM
63
58
0
10 Jul 2020
Revisiting One-vs-All Classifiers for Predictive Uncertainty and
  Out-of-Distribution Detection in Neural Networks
Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks
Shreyas Padhy
Zachary Nado
Jie Jessie Ren
J. Liu
Jasper Snoek
Balaji Lakshminarayanan
UQCV
88
47
0
10 Jul 2020
Boundary thickness and robustness in learning models
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
72
42
0
09 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDLUQCV
81
17
0
08 Jul 2020
Diverse Ensembles Improve Calibration
Diverse Ensembles Improve Calibration
Asa Cooper Stickland
Iain Murray
UQCVFedML
78
28
0
08 Jul 2020
Deep Ensemble Analysis for Imaging X-ray Polarimetry
Deep Ensemble Analysis for Imaging X-ray Polarimetry
A. L. Peirson
R. Romani
H. Marshall
J. Steiner
L. Baldini
23
19
0
08 Jul 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDLOffRL
111
89
0
06 Jul 2020
Increasing Trustworthiness of Deep Neural Networks via Accuracy
  Monitoring
Increasing Trustworthiness of Deep Neural Networks via Accuracy Monitoring
Zhihui Shao
Jianyi Yang
Shaolei Ren
HILM
73
10
0
03 Jul 2020
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Jirí Navrátil
Matthew Arnold
Benjamin Elder
BDLUQCV
34
6
0
02 Jul 2020
FathomNet: An underwater image training database for ocean exploration
  and discovery
FathomNet: An underwater image training database for ocean exploration and discovery
O. Boulais
Benjamin Woodward
B. Schlining
L. Lundsten
K. Barnard
K. L. Bell
K. Katija
110
14
0
30 Jun 2020
Unsupervised Calibration under Covariate Shift
Unsupervised Calibration under Covariate Shift
Anusri Pampari
Stefano Ermon
129
18
0
29 Jun 2020
Improving Calibration through the Relationship with Adversarial
  Robustness
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
86
25
0
29 Jun 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UDUQCVBDLTDI
92
53
0
29 Jun 2020
A Comparison of Uncertainty Estimation Approaches in Deep Learning
  Components for Autonomous Vehicle Applications
A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications
F. Arnez
H. Espinoza
A. Radermacher
Franccois Terrier
UQCV
71
30
0
26 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCVBDLOOD
86
39
0
26 Jun 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
83
188
0
26 Jun 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
101
212
0
24 Jun 2020
Continual Learning in Recurrent Neural Networks
Continual Learning in Recurrent Neural Networks
Benjamin Ehret
Christian Henning
Maria R. Cervera
Alexander Meulemans
J. Oswald
Benjamin Grewe
CLL
83
9
0
22 Jun 2020
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
  Influence Functions
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa
M. Schaar
UQCVBDL
83
23
0
20 Jun 2020
From Predictions to Decisions: Using Lookahead Regularization
From Predictions to Decisions: Using Lookahead Regularization
Nir Rosenfeld
Sophie Hilgard
S. Ravindranath
David C. Parkes
56
21
0
20 Jun 2020
Regression Prior Networks
Regression Prior Networks
A. Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
BDLUQCV
82
38
0
20 Jun 2020
Paying more attention to snapshots of Iterative Pruning: Improving Model
  Compression via Ensemble Distillation
Paying more attention to snapshots of Iterative Pruning: Improving Model Compression via Ensemble Distillation
Duong H. Le
Vo Trung Nhan
N. Thoai
VLM
54
7
0
20 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OODAI4TS
116
251
0
19 Jun 2020
Uncertainty in Gradient Boosting via Ensembles
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
91
97
0
18 Jun 2020
Selective Question Answering under Domain Shift
Selective Question Answering under Domain Shift
Amita Kamath
Robin Jia
Percy Liang
OOD
61
214
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCVUDEDLBDL
114
186
0
16 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
72
11
0
16 Jun 2020
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Frank Hutter
Yee Whye Teh
OODUQCV
128
75
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCVOODBDL
112
103
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
33
7
0
15 Jun 2020
Mean-Field Approximation to Gaussian-Softmax Integral with Application
  to Uncertainty Estimation
Mean-Field Approximation to Gaussian-Softmax Integral with Application to Uncertainty Estimation
Zhiyun Lu
Eugene Ie
Fei Sha
UQCVBDL
68
14
0
13 Jun 2020
A benchmark study on reliable molecular supervised learning via Bayesian
  learning
A benchmark study on reliable molecular supervised learning via Bayesian learning
Doyeong Hwang
Grace Lee
Hanseok Jo
Seyoul Yoon
Seongok Ryu
84
9
0
12 Jun 2020
Revisiting Explicit Regularization in Neural Networks for
  Well-Calibrated Predictive Uncertainty
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDLUQCV
32
0
0
11 Jun 2020
PIVEN: A Deep Neural Network for Prediction Intervals with Specific
  Value Prediction
PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction
Eli Simhayev
Gilad Katz
Lior Rokach
OOD
42
12
0
09 Jun 2020
Robust Learning Through Cross-Task Consistency
Robust Learning Through Cross-Task Consistency
Amir Zamir
Alexander Sax
Teresa Yeo
Oğuzhan Fatih Kar
Nikhil Cheerla
Rohan Suri
Zhangjie Cao
Jitendra Malik
Leonidas Guibas
OOD
68
158
0
07 Jun 2020
Self-Supervised Dynamic Networks for Covariate Shift Robustness
Self-Supervised Dynamic Networks for Covariate Shift Robustness
Tomer Cohen
Noy Shulman
Hai Morgenstern
Roey Mechrez
Erez Farhan
OOD
69
4
0
06 Jun 2020
Previous
123...19202122
Next