ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,042 papers shown
Title
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Uncertainty Prediction for Deep Sequential Regression Using Meta Models
Jirí Navrátil
Matthew Arnold
Benjamin Elder
BDL
UQCV
11
6
0
02 Jul 2020
FathomNet: An underwater image training database for ocean exploration
  and discovery
FathomNet: An underwater image training database for ocean exploration and discovery
O. Boulais
Benjamin Woodward
B. Schlining
L. Lundsten
K. Barnard
K. L. Bell
K. Katija
19
14
0
30 Jun 2020
Unsupervised Calibration under Covariate Shift
Unsupervised Calibration under Covariate Shift
Anusri Pampari
Stefano Ermon
24
17
0
29 Jun 2020
Improving Calibration through the Relationship with Adversarial
  Robustness
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
40
25
0
29 Jun 2020
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
  Higher-Order Influence Functions
Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions
Ahmed Alaa
M. Schaar
UD
UQCV
BDL
TDI
24
53
0
29 Jun 2020
A Comparison of Uncertainty Estimation Approaches in Deep Learning
  Components for Autonomous Vehicle Applications
A Comparison of Uncertainty Estimation Approaches in Deep Learning Components for Autonomous Vehicle Applications
F. Arnez
H. Espinoza
A. Radermacher
Franccois Terrier
UQCV
30
29
0
26 Jun 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
28
38
0
26 Jun 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to
  Distribution Shifts?
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
22
185
0
26 Jun 2020
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
Hyperparameter Ensembles for Robustness and Uncertainty Quantification
F. Wenzel
Jasper Snoek
Dustin Tran
Rodolphe Jenatton
UQCV
33
204
0
24 Jun 2020
Continual Learning in Recurrent Neural Networks
Continual Learning in Recurrent Neural Networks
Benjamin Ehret
Christian Henning
Maria R. Cervera
Alexander Meulemans
J. Oswald
Benjamin Grewe
CLL
26
9
0
22 Jun 2020
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
  Influence Functions
Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa
M. Schaar
UQCV
BDL
14
22
0
20 Jun 2020
From Predictions to Decisions: Using Lookahead Regularization
From Predictions to Decisions: Using Lookahead Regularization
Nir Rosenfeld
Sophie Hilgard
S. Ravindranath
David C. Parkes
22
20
0
20 Jun 2020
Regression Prior Networks
Regression Prior Networks
A. Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
BDL
UQCV
37
36
0
20 Jun 2020
Paying more attention to snapshots of Iterative Pruning: Improving Model
  Compression via Ensemble Distillation
Paying more attention to snapshots of Iterative Pruning: Improving Model Compression via Ensemble Distillation
Duong H. Le
Vo Trung Nhan
N. Thoai
VLM
25
7
0
20 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OOD
AI4TS
34
240
0
19 Jun 2020
Uncertainty in Gradient Boosting via Ensembles
Uncertainty in Gradient Boosting via Ensembles
Aleksei Ustimenko
Liudmila Prokhorenkova
A. Malinin
UQCV
28
94
0
18 Jun 2020
Selective Question Answering under Domain Shift
Selective Question Answering under Domain Shift
Amita Kamath
Robin Jia
Percy Liang
OOD
19
206
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
29
169
0
16 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
35
11
0
16 Jun 2020
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Frank Hutter
Yee Whye Teh
OOD
UQCV
18
71
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
43
100
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
17
7
0
15 Jun 2020
Mean-Field Approximation to Gaussian-Softmax Integral with Application
  to Uncertainty Estimation
Mean-Field Approximation to Gaussian-Softmax Integral with Application to Uncertainty Estimation
Zhiyun Lu
Eugene Ie
Fei Sha
UQCV
BDL
20
14
0
13 Jun 2020
A benchmark study on reliable molecular supervised learning via Bayesian
  learning
A benchmark study on reliable molecular supervised learning via Bayesian learning
Doyeong Hwang
Grace Lee
Hanseok Jo
Seyoul Yoon
Seongok Ryu
32
9
0
12 Jun 2020
Revisiting Explicit Regularization in Neural Networks for
  Well-Calibrated Predictive Uncertainty
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
22
0
0
11 Jun 2020
PIVEN: A Deep Neural Network for Prediction Intervals with Specific
  Value Prediction
PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction
Eli Simhayev
Gilad Katz
Lior Rokach
OOD
9
12
0
09 Jun 2020
Robust Learning Through Cross-Task Consistency
Robust Learning Through Cross-Task Consistency
Amir Zamir
Alexander Sax
Teresa Yeo
Oğuzhan Fatih Kar
Nikhil Cheerla
Rohan Suri
Zhangjie Cao
Jitendra Malik
Leonidas J. Guibas
OOD
14
154
0
07 Jun 2020
Self-Supervised Dynamic Networks for Covariate Shift Robustness
Self-Supervised Dynamic Networks for Covariate Shift Robustness
Tomer Cohen
Noy Shulman
Hai Morgenstern
Roey Mechrez
Erez Farhan
OOD
19
4
0
06 Jun 2020
Bayesian Neural Networks
Bayesian Neural Networks
Tom Charnock
Laurence Perreault Levasseur
F. Lanusse
UQCV
BDL
18
3
0
02 Jun 2020
Fully probabilistic quasar continua predictions near Lyman-α with
  conditional neural spline flows
Fully probabilistic quasar continua predictions near Lyman-α with conditional neural spline flows
D. Reiman
John Tamanas
J. Prochaska
Dominika Ďurovčíková
26
6
0
31 May 2020
MOPO: Model-based Offline Policy Optimization
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
30
754
0
27 May 2020
Detecting Adversarial Examples for Speech Recognition via Uncertainty
  Quantification
Detecting Adversarial Examples for Speech Recognition via Uncertainty Quantification
Sina Daubener
Lea Schonherr
Asja Fischer
D. Kolossa
AAML
37
18
0
24 May 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
  Predictive Uncertainties
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
25
8
0
22 May 2020
Efficient Ensemble Model Generation for Uncertainty Estimation with
  Bayesian Approximation in Segmentation
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
UQCV
16
7
0
21 May 2020
Unsupervised Quality Estimation for Neural Machine Translation
Unsupervised Quality Estimation for Neural Machine Translation
M. Fomicheva
Shuo Sun
Lisa Yankovskaya
Frédéric Blain
Francisco Guzmán
Mark Fishel
Nikolaos Aletras
Vishrav Chaudhary
Lucia Specia
UQLM
20
184
0
21 May 2020
Inferring astrophysical X-ray polarization with deep learning
Inferring astrophysical X-ray polarization with deep learning
N. Moriakov
Ashwin Samudre
M. Negro
Fabian Gieseke
Sydney Otten
L. Hendriks
8
3
0
16 May 2020
Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several
  Thinner Ones?
Deep Ensembles on a Fixed Memory Budget: One Wide Network or Several Thinner Ones?
Nadezhda Chirkova
E. Lobacheva
Dmitry Vetrov
OOD
MoE
18
9
0
14 May 2020
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in
  Deep Learning Algorithms
Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms
J. Caldeira
Brian D. Nord
BDL
UQCV
UD
17
79
0
22 Apr 2020
Deep State Space Models for Nonlinear System Identification
Deep State Space Models for Nonlinear System Identification
Daniel Gedon
Niklas Wahlström
Thomas B. Schon
L. Ljung
26
83
0
31 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
30
6
0
22 Mar 2020
A comprehensive study on the prediction reliability of graph neural
  networks for virtual screening
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
24
7
0
17 Mar 2020
Anomalous Example Detection in Deep Learning: A Survey
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural
  Networks
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
14
68
0
15 Mar 2020
Diversity inducing Information Bottleneck in Model Ensembles
Diversity inducing Information Bottleneck in Model Ensembles
Samarth Sinha
Homanga Bharadhwaj
Anirudh Goyal
Hugo Larochelle
Animesh Garg
Florian Shkurti
BDL
UQCV
22
40
0
10 Mar 2020
Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
  Sampling
Dropout Strikes Back: Improved Uncertainty Estimation via Diversity Sampling
Kirill Fedyanin
Evgenii Tsymbalov
Maxim Panov
UQCV
27
7
0
06 Mar 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
14
55
0
04 Mar 2020
Automatic Differentiation Variational Inference with Mixtures
Automatic Differentiation Variational Inference with Mixtures
Warren Morningstar
Sharad M. Vikram
Cusuh Ham
Andrew Gallagher
Joshua V. Dillon
DRL
BDL
12
20
0
03 Mar 2020
Calibrated Prediction with Covariate Shift via Unsupervised Domain
  Adaptation
Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation
Sangdon Park
Osbert Bastani
James Weimer
Insup Lee
31
52
0
29 Feb 2020
A general framework for ensemble distribution distillation
A general framework for ensemble distribution distillation
Jakob Lindqvist
Amanda Olmin
Fredrik Lindsten
Lennart Svensson
FedML
UQCV
BDL
9
19
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Previous
123...192021
Next