Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02530
Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"
50 / 377 papers shown
Title
Are vision language models robust to uncertain inputs?
Xi Wang
Eric Nalisnick
AAML
VLM
5
0
0
17 May 2025
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Ibrahim Elsharkawy
Yonatan Kahn
18
0
0
13 May 2025
Continuous Visual Autoregressive Generation via Score Maximization
Chenze Shao
Fandong Meng
Jie Zhou
DiffM
31
1
0
12 May 2025
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
50
0
0
08 May 2025
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
SungHeon Jeong
Jihong Park
Mohsen Imani
59
0
0
05 May 2025
ReeM: Ensemble Building Thermodynamics Model for Efficient HVAC Control via Hierarchical Reinforcement Learning
Yang Deng
Yaohui Liu
Rui Liang
Dafang Zhao
Donghua Xie
Ittetsu Taniguchi
Dan Wang
AI4CE
145
0
0
05 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
131
0
0
04 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
Are We Done with Object-Centric Learning?
Alexander Rubinstein
Ameya Prabhu
Matthias Bethge
Seong Joon Oh
OCL
655
0
0
09 Apr 2025
Ranking pre-trained segmentation models for zero-shot transferability
Joshua Talks
Anna Kreshuk
151
0
0
01 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
155
0
0
28 Feb 2025
Similarity-Distance-Magnitude Universal Verification
Allen Schmaltz
UQCV
AAML
167
0
0
27 Feb 2025
Efficient Learning Under Density Shift in Incremental Settings Using Cramér-Rao-Based Regularization
Behraj Khan
Behroz Mirza
Nouman Durrani
T. Syed
60
0
0
18 Feb 2025
The Cake that is Intelligence and Who Gets to Bake it: An AI Analogy and its Implications for Participation
Martin Mundt
Anaelia Ovalle
Felix Friedrich
A Pranav
Subarnaduti Paul
Manuel Brack
Kristian Kersting
William Agnew
314
0
0
05 Feb 2025
GDO: Gradual Domain Osmosis
Zixi Wang
Yubo Huang
183
0
0
31 Jan 2025
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Behraj Khan
T. Syed
157
1
0
29 Jan 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Matias Valdenegro-Toro
Marco Zullich
BDL
PER
UQCV
UD
220
0
0
14 Jan 2025
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
P. Melki
Lionel Bombrun
Boubacar Diallo
Jérôme Dias
Jean-Pierre da Costa
43
0
0
13 Jan 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
108
2
0
03 Jan 2025
Pretraining with random noise for uncertainty calibration
Jeonghwan Cheon
Se-Bum Paik
OnRL
46
0
0
23 Dec 2024
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
72
1
0
30 Oct 2024
Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Lam Nguyen Tung
Steven Cho
Xiaoning Du
Neelofar Neelofar
Valerio Terragni
Stefano Ruberto
Aldeida Aleti
171
2
0
30 Oct 2024
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Ruijia Niu
D. Wu
Rose Yu
Yi Ma
33
1
0
09 Oct 2024
Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
Michael J. Kenney
Katerina G. Malollari
Sergei V. Kalinin
M. Ziatdinov
BDL
36
0
0
08 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
A. Benfenati
P. Causin
Hang Yu
Zhedong Zheng
3DPC
46
2
0
01 Aug 2024
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data
Atul Kumar
S. Garg
Soumya Dutta
53
0
0
23 Jul 2024
Improving robustness to corruptions with multiplicative weight perturbations
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
44
0
0
24 Jun 2024
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA
Zehuan Zhang
Hongxiang Fan
Hao Mark Chen
Lukasz Dudziak
Wayne Luk
BDL
40
0
0
23 Jun 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
40
0
0
14 Jun 2024
DAISY: Data Adaptive Self-Supervised Early Exit for Speech Representation Models
T. Lin
Hung-yi Lee
Hao Tang
40
1
0
08 Jun 2024
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
114
1
0
04 Jun 2024
Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling
Cristian Rodriguez-Opazo
Ehsan Abbasnejad
Damien Teney
Edison Marrese-Taylor
Hamed Damirchi
Anton Van Den Hengel
VLM
40
1
0
27 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
6
0
23 May 2024
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
A. Fuller
Daniel G. Kyrollos
Yousef Yassin
James R. Green
52
2
0
22 May 2024
System Safety Monitoring of Learned Components Using Temporal Metric Forecasting
Sepehr Sharifi
Andrea Stocco
Lionel C. Briand
AI4TS
48
1
0
21 May 2024
Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
Vegard Flovik
OOD
34
1
0
03 May 2024
Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation
Carlos Plou
Ana C. Murillo
Ruben Martinez-Cantin
OffRL
40
0
0
02 Apr 2024
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Lingdong Kong
Xiang Xu
Jun Cen
Wenwei Zhang
Liang Pan
Kai-xiang Chen
Ziwei Liu
53
5
0
25 Mar 2024
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Fei Zhu
Xu-Yao Zhang
Zhen Cheng
Cheng-Lin Liu
UQCV
52
10
0
05 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
12
0
22 Feb 2024
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
28
8
0
16 Feb 2024
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under Distribution Shifts
Masoumeh Javanbakhat
Md Tasnimul Hasan
Cristoph Lippert
UQCV
OOD
26
1
0
10 Feb 2024
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Will LeVine
Benjamin Pikus
Jacob Phillips
Berk Norman
Fernando Amat Gil
Sean Hendryx
OODD
75
1
0
22 Jan 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
40
1
0
29 Dec 2023
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
Jiaming Liu
Ran Xu
Senqiao Yang
Renrui Zhang
Qizhe Zhang
Zehui Chen
Yandong Guo
Shanghang Zhang
TTA
35
10
0
19 Dec 2023
1
2
3
4
5
6
7
8
Next