ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 377 papers shown
Title
Are vision language models robust to uncertain inputs?
Are vision language models robust to uncertain inputs?
Xi Wang
Eric Nalisnick
AAML
VLM
5
0
0
17 May 2025
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation
Ibrahim Elsharkawy
Yonatan Kahn
18
0
0
13 May 2025
Continuous Visual Autoregressive Generation via Score Maximization
Continuous Visual Autoregressive Generation via Score Maximization
Chenze Shao
Fandong Meng
Jie Zhou
DiffM
31
1
0
12 May 2025
Performance Estimation in Binary Classification Using Calibrated Confidence
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
50
0
0
08 May 2025
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
Uncertainty-Weighted Image-Event Multimodal Fusion for Video Anomaly Detection
SungHeon Jeong
Jihong Park
Mohsen Imani
59
0
0
05 May 2025
ReeM: Ensemble Building Thermodynamics Model for Efficient HVAC Control via Hierarchical Reinforcement Learning
ReeM: Ensemble Building Thermodynamics Model for Efficient HVAC Control via Hierarchical Reinforcement Learning
Yang Deng
Yaohui Liu
Rui Liang
Dafang Zhao
Donghua Xie
Ittetsu Taniguchi
Dan Wang
AI4CE
145
0
0
05 May 2025
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
131
0
0
04 May 2025
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Comparing Uncertainty Measurement and Mitigation Methods for Large Language Models: A Systematic Review
Toghrul Abbasli
Kentaroh Toyoda
Yuan Wang
Leon Witt
Muhammad Asif Ali
Yukai Miao
Dan Li
Qingsong Wei
UQCV
92
0
0
25 Apr 2025
Are We Done with Object-Centric Learning?
Are We Done with Object-Centric Learning?
Alexander Rubinstein
Ameya Prabhu
Matthias Bethge
Seong Joon Oh
OCL
655
0
0
09 Apr 2025
Ranking pre-trained segmentation models for zero-shot transferability
Joshua Talks
Anna Kreshuk
151
0
0
01 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
155
0
0
28 Feb 2025
Similarity-Distance-Magnitude Universal Verification
Similarity-Distance-Magnitude Universal Verification
Allen Schmaltz
UQCV
AAML
167
0
0
27 Feb 2025
Efficient Learning Under Density Shift in Incremental Settings Using Cramér-Rao-Based Regularization
Efficient Learning Under Density Shift in Incremental Settings Using Cramér-Rao-Based Regularization
Behraj Khan
Behroz Mirza
Nouman Durrani
T. Syed
60
0
0
18 Feb 2025
The Cake that is Intelligence and Who Gets to Bake it: An AI Analogy and its Implications for Participation
The Cake that is Intelligence and Who Gets to Bake it: An AI Analogy and its Implications for Participation
Martin Mundt
Anaelia Ovalle
Felix Friedrich
A Pranav
Subarnaduti Paul
Manuel Brack
Kristian Kersting
William Agnew
314
0
0
05 Feb 2025
GDO: Gradual Domain Osmosis
GDO: Gradual Domain Osmosis
Zixi Wang
Yubo Huang
183
0
0
31 Jan 2025
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Technical report on label-informed logit redistribution for better domain generalization in low-shot classification with foundation models
Behraj Khan
T. Syed
157
1
0
29 Jan 2025
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
Matias Valdenegro-Toro
Marco Zullich
BDL
PER
UQCV
UD
220
0
0
14 Jan 2025
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction
P. Melki
Lionel Bombrun
Boubacar Diallo
Jérôme Dias
Jean-Pierre da Costa
43
0
0
13 Jan 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
108
2
0
03 Jan 2025
Pretraining with random noise for uncertainty calibration
Pretraining with random noise for uncertainty calibration
Jeonghwan Cheon
Se-Bum Paik
OnRL
46
0
0
23 Dec 2024
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Legitimate ground-truth-free metrics for deep uncertainty classification scoring
Arthur Pignet
Chiara Regniez
John Klein
72
1
0
30 Oct 2024
Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Automated Trustworthiness Oracle Generation for Machine Learning Text Classifiers
Lam Nguyen Tung
Steven Cho
Xiaoning Du
Neelofar Neelofar
Valerio Terragni
Stefano Ruberto
Aldeida Aleti
171
2
0
30 Oct 2024
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Functional-level Uncertainty Quantification for Calibrated Fine-tuning on LLMs
Ruijia Niu
D. Wu
Rose Yu
Yi Ma
33
1
0
09 Oct 2024
Predicting Battery Capacity Fade Using Probabilistic Machine Learning
  Models With and Without Pre-Trained Priors
Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
Michael J. Kenney
Katerina G. Malollari
Sergei V. Kalinin
M. Ziatdinov
BDL
36
0
0
08 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
36
0
0
06 Oct 2024
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object
  Detection
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection
A. Benfenati
P. Causin
Hang Yu
Zhedong Zheng
3DPC
46
2
0
01 Aug 2024
Uncertainty-Aware Deep Neural Representations for Visual Analysis of
  Vector Field Data
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data
Atul Kumar
S. Garg
Soumya Dutta
53
0
0
23 Jul 2024
Improving robustness to corruptions with multiplicative weight
  perturbations
Improving robustness to corruptions with multiplicative weight perturbations
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
44
0
0
24 Jun 2024
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction
  on FPGA
Hardware-Aware Neural Dropout Search for Reliable Uncertainty Prediction on FPGA
Zehuan Zhang
Hongxiang Fan
Hao Mark Chen
Lukasz Dudziak
Wayne Luk
BDL
40
0
0
23 Jun 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across
  Diverse Test Conditions?
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
40
0
0
14 Jun 2024
DAISY: Data Adaptive Self-Supervised Early Exit for Speech
  Representation Models
DAISY: Data Adaptive Self-Supervised Early Exit for Speech Representation Models
T. Lin
Hung-yi Lee
Hao Tang
40
1
0
08 Jun 2024
Orthogonal Causal Calibration
Orthogonal Causal Calibration
Justin Whitehouse
Christopher Jung
Vasilis Syrgkanis
Bryan Wilder
Zhiwei Steven Wu
CML
114
1
0
04 Jun 2024
Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling
Synergy and Diversity in CLIP: Enhancing Performance Through Adaptive Backbone Ensembling
Cristian Rodriguez-Opazo
Ehsan Abbasnejad
Damien Teney
Edison Marrese-Taylor
Hamed Damirchi
Anton Van Den Hengel
VLM
40
1
0
27 May 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
6
0
23 May 2024
LookHere: Vision Transformers with Directed Attention Generalize and
  Extrapolate
LookHere: Vision Transformers with Directed Attention Generalize and Extrapolate
A. Fuller
Daniel G. Kyrollos
Yousef Yassin
James R. Green
52
2
0
22 May 2024
System Safety Monitoring of Learned Components Using Temporal Metric
  Forecasting
System Safety Monitoring of Learned Components Using Temporal Metric Forecasting
Sepehr Sharifi
Andrea Stocco
Lionel C. Briand
AI4TS
48
1
0
21 May 2024
Quantifying Distribution Shifts and Uncertainties for Enhanced Model
  Robustness in Machine Learning Applications
Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications
Vegard Flovik
OOD
34
1
0
03 May 2024
Active Exploration in Bayesian Model-based Reinforcement Learning for
  Robot Manipulation
Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation
Carlos Plou
Ana C. Murillo
Ruben Martinez-Cantin
OffRL
40
0
0
02 Apr 2024
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding
Lingdong Kong
Xiang Xu
Jun Cen
Wenwei Zhang
Liang Pan
Kai-xiang Chen
Ziwei Liu
53
5
0
25 Mar 2024
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Revisiting Confidence Estimation: Towards Reliable Failure Prediction
Fei Zhu
Xu-Yao Zhang
Zhen Cheng
Cheng-Lin Liu
UQCV
52
10
0
05 Mar 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
43
5
0
04 Mar 2024
Stable Neural Stochastic Differential Equations in Analyzing Irregular
  Time Series Data
Stable Neural Stochastic Differential Equations in Analyzing Irregular Time Series Data
YongKyung Oh
Dongyoung Lim
Sungil Kim
AI4TS
43
12
0
22 Feb 2024
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and
  Monocular Depth Estimation
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
28
8
0
16 Feb 2024
Predictive Churn with the Set of Good Models
Predictive Churn with the Set of Good Models
J. Watson-Daniels
Flavio du Pin Calmon
Alexander DÁmour
Carol Xuan Long
David C. Parkes
Berk Ustun
83
7
0
12 Feb 2024
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under
  Distribution Shifts
Assessing Uncertainty Estimation Methods for 3D Image Segmentation under Distribution Shifts
Masoumeh Javanbakhat
Md Tasnimul Hasan
Cristoph Lippert
UQCV
OOD
26
1
0
10 Feb 2024
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy
Will LeVine
Benjamin Pikus
Jacob Phillips
Berk Norman
Fernando Amat Gil
Sean Hendryx
OODD
75
1
0
22 Jan 2024
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift
Benjamin Eyre
Elliot Creager
David Madras
Antonio Torralba
Katherine Heller
OOD
OODD
40
1
0
29 Dec 2023
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual
  Test-Time Adaptation
Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
Jiaming Liu
Ran Xu
Senqiao Yang
Renrui Zhang
Qizhe Zhang
Zehui Chen
Yandong Guo
Shanghang Zhang
TTA
35
10
0
19 Dec 2023
12345678
Next