ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,043 papers shown
Title
On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
  Detection
On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution Detection
Guoxuan Xia
C. Bouganis
UQCV
13
14
0
15 Jul 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
Single Model Uncertainty Estimation via Stochastic Data Centering
Single Model Uncertainty Estimation via Stochastic Data Centering
Jayaraman J. Thiagarajan
Rushil Anirudh
V. Narayanaswamy
P. Bremer
UQCV
OOD
35
26
0
14 Jul 2022
Estimating Classification Confidence Using Kernel Densities
Estimating Classification Confidence Using Kernel Densities
P. Salamon
David Salamon
V. A. Cantu
Michelle An
Tyler Perry
Robert A. Edwards
A. Segall
23
0
0
13 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
32
31
0
13 Jul 2022
Language Models (Mostly) Know What They Know
Language Models (Mostly) Know What They Know
Saurav Kadavath
Tom Conerly
Amanda Askell
T. Henighan
Dawn Drain
...
Nicholas Joseph
Benjamin Mann
Sam McCandlish
C. Olah
Jared Kaplan
ELM
61
726
0
11 Jul 2022
What is Flagged in Uncertainty Quantification? Latent Density Models for
  Uncertainty Categorization
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
Hao Sun
B. V. Breugel
Jonathan Crabbé
Nabeel Seedat
M. Schaar
32
4
0
11 Jul 2022
Consistency is the key to further mitigating catastrophic forgetting in
  continual learning
Consistency is the key to further mitigating catastrophic forgetting in continual learning
Prashant Shivaram Bhat
Bahram Zonooz
Elahe Arani
CLL
34
16
0
11 Jul 2022
On the Robustness and Anomaly Detection of Sparse Neural Networks
On the Robustness and Anomaly Detection of Sparse Neural Networks
Morgane Ayle
Bertrand Charpentier
John Rachwan
Daniel Zügner
Simon Geisler
Stephan Günnemann
AAML
63
3
0
09 Jul 2022
Out of Distribution Detection via Neural Network Anchoring
Out of Distribution Detection via Neural Network Anchoring
Rushil Anirudh
Jayaraman J. Thiagarajan
UQCV
39
5
0
08 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
30
28
0
30 Jun 2022
Augment like there's no tomorrow: Consistently performing neural
  networks for medical imaging
Augment like there's no tomorrow: Consistently performing neural networks for medical imaging
J. Pohjonen
Carolin Sturenberg
Atte Fohr
Reija Randén-Brady
L. Luomala
J. Lohi
Esa Pitkanen
A. Rannikko
T. Mirtti
OOD
30
3
0
30 Jun 2022
Improving Ensemble Distillation With Weight Averaging and Diversifying
  Perturbation
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
G. Nam
Hyungi Lee
Byeongho Heo
Juho Lee
UQCV
FedML
31
7
0
30 Jun 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
35
34
0
29 Jun 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
35
4
0
28 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
22
5
0
24 Jun 2022
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
23
4
0
22 Jun 2022
How to Combine Variational Bayesian Networks in Federated Learning
How to Combine Variational Bayesian Networks in Federated Learning
Atahan Ozer
Kadir Burak Buldu
Abdullah Akgul
Gözde B. Ünal
FedML
38
5
0
22 Jun 2022
Performance Prediction Under Dataset Shift
Performance Prediction Under Dataset Shift
Simona Maggio
Victor Bouvier
L. Dreyfus-Schmidt
OOD
AI4TS
21
2
0
21 Jun 2022
Ensembling over Classifiers: a Bias-Variance Perspective
Ensembling over Classifiers: a Bias-Variance Perspective
Neha Gupta
Jamie Smith
Ben Adlam
Zelda E. Mariet
FedML
UQCV
FaML
31
6
0
21 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
37
28
0
17 Jun 2022
Uncertainty-aware Evaluation of Time-Series Classification for Online
  Handwriting Recognition with Domain Shift
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
39
10
0
17 Jun 2022
Double Check Your State Before Trusting It: Confidence-Aware
  Bidirectional Offline Model-Based Imagination
Double Check Your State Before Trusting It: Confidence-Aware Bidirectional Offline Model-Based Imagination
Jiafei Lyu
Xiu Li
Zongqing Lu
OffRL
32
25
0
16 Jun 2022
READ: Aggregating Reconstruction Error into Out-of-distribution
  Detection
READ: Aggregating Reconstruction Error into Out-of-distribution Detection
Wenyu Jiang
Yuxin Ge
Hao Cheng
Mingcai Chen
Shuai Feng
Chongjun Wang
OODD
29
11
0
15 Jun 2022
Mildly Conservative Q-Learning for Offline Reinforcement Learning
Mildly Conservative Q-Learning for Offline Reinforcement Learning
Jiafei Lyu
Xiaoteng Ma
Xiu Li
Zongqing Lu
OffRL
37
103
0
09 Jun 2022
Robust Calibration with Multi-domain Temperature Scaling
Robust Calibration with Multi-domain Temperature Scaling
Yaodong Yu
Stephen Bates
Yi Ma
Michael I. Jordan
OOD
UQCV
34
33
0
06 Jun 2022
Tackling covariate shift with node-based Bayesian neural networks
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDL
UQCV
29
6
0
06 Jun 2022
Stochastic Multiple Target Sampling Gradient Descent
Stochastic Multiple Target Sampling Gradient Descent
Hoang Phan
Ngoc N. Tran
Trung Le
Toan M. Tran
Nhat Ho
Dinh Q. Phung
37
14
0
04 Jun 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement
  Learning
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PER
UD
50
24
0
03 Jun 2022
Excess risk analysis for epistemic uncertainty with application to
  variational inference
Excess risk analysis for epistemic uncertainty with application to variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
UQCV
31
1
0
02 Jun 2022
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network Ensembles
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
17
11
0
02 Jun 2022
Masked Bayesian Neural Networks : Computation and Optimality
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Yongdai Kim
TPM
30
1
0
02 Jun 2022
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
  Modulation
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
Mehmet Özgür Türkoglu
Alexander Becker
H. Gündüz
Mina Rezaei
Bernd Bischl
Rodrigo Caye Daudt
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
FedML
UQCV
48
25
0
31 May 2022
CHALLENGER: Training with Attribution Maps
CHALLENGER: Training with Attribution Maps
Christian Tomani
Daniel Cremers
12
1
0
30 May 2022
Teaching Models to Express Their Uncertainty in Words
Teaching Models to Express Their Uncertainty in Words
Stephanie C. Lin
Jacob Hilton
Owain Evans
OOD
35
368
0
28 May 2022
Failure Detection in Medical Image Classification: A Reality Check and
  Benchmarking Testbed
Failure Detection in Medical Image Classification: A Reality Check and Benchmarking Testbed
Mélanie Bernhardt
Fabio De Sousa Ribeiro
Ben Glocker
34
10
0
27 May 2022
Why So Pessimistic? Estimating Uncertainties for Offline RL through
  Ensembles, and Why Their Independence Matters
Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
Seyed Kamyar Seyed Ghasemipour
S. Gu
Ofir Nachum
OffRL
31
69
0
27 May 2022
What is Your Metric Telling You? Evaluating Classifier Calibration under
  Context-Specific Definitions of Reliability
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
John Kirchenbauer
Jacob Oaks
Eric Heim
UQCV
41
4
0
23 May 2022
PyRelationAL: a python library for active learning research and
  development
PyRelationAL: a python library for active learning research and development
P. Scherer
Thomas Gaudelet
Alison Pouplin
Alice Del Vecchio
S. SurajM
Oliver Bolton
Jyothish Soman
J. Taylor-King
Lindsay Edwards
KELM
27
0
0
23 May 2022
Active Source Free Domain Adaptation
Active Source Free Domain Adaptation
Fan Wang
Zhongyi Han
Zhiyan Zhang
Yilong Yin
156
11
0
22 May 2022
Transformer-based out-of-distribution detection for clinically safe
  segmentation
Transformer-based out-of-distribution detection for clinically safe segmentation
M. Graham
Petru-Daniel Tudosiu
P. Wright
W. H. Pinaya
J. U-King-im
...
H. Jäger
D. Werring
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
MedIm
31
21
0
21 May 2022
Test-time Batch Normalization
Test-time Batch Normalization
Tao Yang
Shenglong Zhou
Yuwang Wang
Yan Lu
Nanning Zheng
OOD
59
9
0
20 May 2022
On the Calibration of Probabilistic Classifier Sets
On the Calibration of Probabilistic Classifier Sets
Thomas Mortier
Viktor Bengs
Eyke Hüllermeier
Stijn Luca
Willem Waegeman
UQCV
35
7
0
20 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCV
EDL
194
35
0
20 May 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural
  Networks
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
42
12
0
20 May 2022
Diverse Weight Averaging for Out-of-Distribution Generalization
Diverse Weight Averaging for Out-of-Distribution Generalization
Alexandre Ramé
Matthieu Kirchmeyer
Thibaud Rahier
A. Rakotomamonjy
Patrick Gallinari
Matthieu Cord
OOD
199
129
0
19 May 2022
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Simple Regularisation for Uncertainty-Aware Knowledge Distillation
Martin Ferianc
Miguel R. D. Rodrigues
UQCV
49
0
0
19 May 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian
  Inference, Active Learning, and Active Sampling
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCV
BDL
60
3
0
18 May 2022
Dark solitons in Bose-Einstein condensates: a dataset for many-body
  physics research
Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research
A. R. Fritsch
Shangjie Guo
Sophia M. Koh
I. Spielman
Justyna P. Zwolak
29
3
0
17 May 2022
Evaluating Uncertainty Calibration for Open-Set Recognition
Evaluating Uncertainty Calibration for Open-Set Recognition
Zongyao Lyu
Nolan B. Gutierrez
William J. Beksi
UQCV
35
1
0
15 May 2022
Previous
123...111213...192021
Next