ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
v1v2 (latest)

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,062 papers shown
Title
SmOOD: Smoothness-based Out-of-Distribution Detection Approach for
  Surrogate Neural Networks in Aircraft Design
SmOOD: Smoothness-based Out-of-Distribution Detection Approach for Surrogate Neural Networks in Aircraft Design
Houssem Ben Braiek
Ali Tfaily
Foutse Khomh
Thomas Reid
Ciro Guida
77
0
0
07 Sep 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are
  Conditional Entropy and Mutual Information Appropriate Measures?
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PERUD
110
77
0
07 Sep 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
87
17
0
25 Aug 2022
Lottery Pools: Winning More by Interpolating Tickets without Increasing
  Training or Inference Cost
Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost
Lu Yin
Shiwei Liu
Fang Meng
Tianjin Huang
Vlado Menkovski
Mykola Pechenizkiy
54
13
0
23 Aug 2022
Generalised Co-Salient Object Detection
Generalised Co-Salient Object Detection
Jiawei Liu
Jing Zhang
Ruikai Cui
Kaihao Zhang
Weihao Li
Nick Barnes
59
3
0
20 Aug 2022
Region-Based Evidential Deep Learning to Quantify Uncertainty and
  Improve Robustness of Brain Tumor Segmentation
Region-Based Evidential Deep Learning to Quantify Uncertainty and Improve Robustness of Brain Tumor Segmentation
Hao Li
Yang Nan
Javier Del Ser
Guang Yang
EDLOODUQCV
86
39
0
11 Aug 2022
Multi-task Active Learning for Pre-trained Transformer-based Models
Multi-task Active Learning for Pre-trained Transformer-based Models
Guy Rotman
Roi Reichart
70
23
0
10 Aug 2022
Bayesian Pseudo Labels: Expectation Maximization for Robust and
  Efficient Semi-Supervised Segmentation
Bayesian Pseudo Labels: Expectation Maximization for Robust and Efficient Semi-Supervised Segmentation
Moucheng Xu
Yukun Zhou
Chen Jin
M. Groot
Daniel C. Alexander
N. Oxtoby
Yipeng Hu
Joseph Jacob
VLMOOD
37
12
0
08 Aug 2022
Improved post-hoc probability calibration for out-of-domain MRI
  segmentation
Improved post-hoc probability calibration for out-of-domain MRI segmentation
Cheng Ouyang
Shuo Wang
Chong Chen
Zeju Li
Wenjia Bai
Bernhard Kainz
Daniel Rueckert
UQCVMedIm
74
4
0
04 Aug 2022
Exploration with Model Uncertainty at Extreme Scale in Real-Time Bidding
Exploration with Model Uncertainty at Extreme Scale in Real-Time Bidding
Jan Hartman
Davorin Kopic
31
2
0
03 Aug 2022
XOOD: Extreme Value Based Out-Of-Distribution Detection For Image
  Classification
XOOD: Extreme Value Based Out-Of-Distribution Detection For Image Classification
Frej Berglind
Haron Temam
S. Mukhopadhyay
K. Das
Md Saiful Islam Sajol
K. Sricharan
Kumar Kallurupalli
OODD
23
0
0
01 Aug 2022
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
83
15
0
31 Jul 2022
Towards Clear Expectations for Uncertainty Estimation
Towards Clear Expectations for Uncertainty Estimation
Victor Bouvier
Simona Maggio
A. Abraham
L. Dreyfus-Schmidt
UQCV
65
2
0
27 Jul 2022
Domain Adaptation under Open Set Label Shift
Domain Adaptation under Open Set Label Shift
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
OODVLM
85
42
0
26 Jul 2022
Improving Predictive Performance and Calibration by Weight Fusion in
  Semantic Segmentation
Improving Predictive Performance and Calibration by Weight Fusion in Semantic Segmentation
Timo Sämann
A. Hammam
Andrei Bursuc
Christoph Stiller
H. Groß
FedML
53
1
0
22 Jul 2022
JAWS: Auditing Predictive Uncertainty Under Covariate Shift
JAWS: Auditing Predictive Uncertainty Under Covariate Shift
Drew Prinster
Anqi Liu
Suchi Saria
178
13
0
21 Jul 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
69
18
0
20 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OODOODDAAML
143
76
0
19 Jul 2022
IDPS Signature Classification with a Reject Option and the Incorporation
  of Expert Knowledge
IDPS Signature Classification with a Reject Option and the Incorporation of Expert Knowledge
Hidetoshi Kawaguchi
Yuichi Nakatani
S. Okada
45
3
0
19 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCVOODDOOD
104
39
0
18 Jul 2022
Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
  Classification
Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence Classification
Sarwan Ali
Bikram Sahoo
Alexander Zelikovskiy
Pin-Yu Chen
Murray Patterson
OODAAML
79
23
0
18 Jul 2022
On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution
  Detection
On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution Detection
Guoxuan Xia
C. Bouganis
UQCV
78
14
0
15 Jul 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
140
126
0
15 Jul 2022
Single Model Uncertainty Estimation via Stochastic Data Centering
Single Model Uncertainty Estimation via Stochastic Data Centering
Jayaraman J. Thiagarajan
Rushil Anirudh
V. Narayanaswamy
P. Bremer
UQCVOOD
67
28
0
14 Jul 2022
Estimating Classification Confidence Using Kernel Densities
Estimating Classification Confidence Using Kernel Densities
P. Salamon
David Salamon
V. A. Cantu
Michelle An
Tyler Perry
Robert A. Edwards
A. Segall
62
0
0
13 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
74
35
0
13 Jul 2022
Language Models (Mostly) Know What They Know
Language Models (Mostly) Know What They Know
Saurav Kadavath
Tom Conerly
Amanda Askell
T. Henighan
Dawn Drain
...
Nicholas Joseph
Benjamin Mann
Sam McCandlish
C. Olah
Jared Kaplan
ELM
145
835
0
11 Jul 2022
What is Flagged in Uncertainty Quantification? Latent Density Models for
  Uncertainty Categorization
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
Hao Sun
B. V. Breugel
Jonathan Crabbé
Nabeel Seedat
M. Schaar
87
4
0
11 Jul 2022
Consistency is the key to further mitigating catastrophic forgetting in
  continual learning
Consistency is the key to further mitigating catastrophic forgetting in continual learning
Prashant Shivaram Bhat
Bahram Zonooz
Elahe Arani
CLL
63
17
0
11 Jul 2022
On the Robustness and Anomaly Detection of Sparse Neural Networks
On the Robustness and Anomaly Detection of Sparse Neural Networks
Morgane Ayle
Bertrand Charpentier
John Rachwan
Daniel Zügner
Simon Geisler
Stephan Günnemann
AAML
81
3
0
09 Jul 2022
Out of Distribution Detection via Neural Network Anchoring
Out of Distribution Detection via Neural Network Anchoring
Rushil Anirudh
Jayaraman J. Thiagarajan
UQCV
118
5
0
08 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
64
30
0
30 Jun 2022
Augment like there's no tomorrow: Consistently performing neural
  networks for medical imaging
Augment like there's no tomorrow: Consistently performing neural networks for medical imaging
J. Pohjonen
Carolin Sturenberg
Atte Fohr
Reija Randén-Brady
L. Luomala
J. Lohi
Esa Pitkanen
A. Rannikko
T. Mirtti
OOD
51
3
0
30 Jun 2022
Improving Ensemble Distillation With Weight Averaging and Diversifying
  Perturbation
Improving Ensemble Distillation With Weight Averaging and Diversifying Perturbation
G. Nam
Hyungi Lee
Byeongho Heo
Juho Lee
UQCVFedML
62
7
0
30 Jun 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
97
36
0
29 Jun 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
91
4
0
28 Jun 2022
Robustness to corruption in pre-trained Bayesian neural networks
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OODUQCV
61
5
0
24 Jun 2022
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
96
5
0
22 Jun 2022
How to Combine Variational Bayesian Networks in Federated Learning
How to Combine Variational Bayesian Networks in Federated Learning
Atahan Ozer
Kadir Burak Buldu
Abdullah Akgul
Gözde B. Ünal
FedML
91
6
0
22 Jun 2022
Performance Prediction Under Dataset Shift
Performance Prediction Under Dataset Shift
Simona Maggio
Victor Bouvier
L. Dreyfus-Schmidt
OODAI4TS
33
3
0
21 Jun 2022
Ensembling over Classifiers: a Bias-Variance Perspective
Ensembling over Classifiers: a Bias-Variance Perspective
Neha Gupta
Jamie Smith
Ben Adlam
Zelda E. Mariet
FedMLUQCVFaML
54
7
0
21 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCVBDL
96
31
0
17 Jun 2022
Uncertainty-aware Evaluation of Time-Series Classification for Online
  Handwriting Recognition with Domain Shift
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift
Andreas Klass
Sven M. Lorenz
M. Lauer-Schmaltz
David Rügamer
Bernd Bischl
Christopher Mutschler
Felix Ott
77
10
0
17 Jun 2022
Double Check Your State Before Trusting It: Confidence-Aware
  Bidirectional Offline Model-Based Imagination
Double Check Your State Before Trusting It: Confidence-Aware Bidirectional Offline Model-Based Imagination
Jiafei Lyu
Xiu Li
Zongqing Lu
OffRL
85
26
0
16 Jun 2022
READ: Aggregating Reconstruction Error into Out-of-distribution
  Detection
READ: Aggregating Reconstruction Error into Out-of-distribution Detection
Wenyu Jiang
Yuxin Ge
Hao Cheng
Mingcai Chen
Shuai Feng
Chongjun Wang
OODD
113
12
0
15 Jun 2022
Mildly Conservative Q-Learning for Offline Reinforcement Learning
Mildly Conservative Q-Learning for Offline Reinforcement Learning
Jiafei Lyu
Xiaoteng Ma
Xiu Li
Zongqing Lu
OffRL
106
113
0
09 Jun 2022
Robust Calibration with Multi-domain Temperature Scaling
Robust Calibration with Multi-domain Temperature Scaling
Yaodong Yu
Stephen Bates
Yi-An Ma
Michael I. Jordan
OODUQCV
84
35
0
06 Jun 2022
Tackling covariate shift with node-based Bayesian neural networks
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDLUQCV
63
6
0
06 Jun 2022
Stochastic Multiple Target Sampling Gradient Descent
Stochastic Multiple Target Sampling Gradient Descent
Hoang Phan
Ngoc N. Tran
Trung Le
Toan M. Tran
Nhat Ho
Dinh Q. Phung
100
14
0
04 Jun 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement
  Learning
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PERUD
85
26
0
03 Jun 2022
Previous
123...111213...202122
Next