ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
v1v2 (latest)

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,062 papers shown
Title
Deconstructing Distributions: A Pointwise Framework of Learning
Deconstructing Distributions: A Pointwise Framework of Learning
Gal Kaplun
Nikhil Ghosh
Saurabh Garg
Boaz Barak
Preetum Nakkiran
OOD
87
21
0
20 Feb 2022
Out of Distribution Data Detection Using Dropout Bayesian Neural
  Networks
Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
A. Nguyen
Fred Lu
Gary Lopez Munoz
Edward Raff
Charles K. Nicholas
James Holt
UQCV
74
23
0
18 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OODUQCV
145
65
0
14 Feb 2022
D2ADA: Dynamic Density-aware Active Domain Adaptation for Semantic
  Segmentation
D2ADA: Dynamic Density-aware Active Domain Adaptation for Semantic Segmentation
Tsung-Han Wu
Yi-Syuan Liou
Shaojie Yuan
Hsin-Ying Lee
Tung-I Chen
Kuan-Chih Huang
Winston H. Hsu
100
9
0
14 Feb 2022
EREBA: Black-box Energy Testing of Adaptive Neural Networks
EREBA: Black-box Energy Testing of Adaptive Neural Networks
Mirazul Haque
Yaswanth Yadlapalli
Wei Yang
Cong Liu
AAML
51
11
0
12 Feb 2022
Improving Generalization via Uncertainty Driven Perturbations
Improving Generalization via Uncertainty Driven Perturbations
Matteo Pagliardini
Gilberto Manunza
Martin Jaggi
Michael I. Jordan
Tatjana Chavdarova
AAMLAI4CE
78
4
0
11 Feb 2022
Accountability in an Algorithmic Society: Relationality, Responsibility,
  and Robustness in Machine Learning
Accountability in an Algorithmic Society: Relationality, Responsibility, and Robustness in Machine Learning
A. Feder Cooper
Emanuel Moss
Benjamin Laufer
Helen Nissenbaum
MLAU
98
90
0
10 Feb 2022
Non-Linear Spectral Dimensionality Reduction Under Uncertainty
Non-Linear Spectral Dimensionality Reduction Under Uncertainty
Firas Laakom
Jenni Raitoharju
Nikolaos Passalis
Alexandros Iosifidis
Moncef Gabbouj
UD
32
0
0
09 Feb 2022
A Unified Prediction Framework for Signal Maps
A Unified Prediction Framework for Signal Maps
Emmanouil Alimpertis
A. Markopoulou
C. Butts
Evita Bakopoulou
Konstantinos Psounis
37
3
0
08 Feb 2022
Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
  Time-Series
Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary Time-Series
Sercan O. Arik
Nathanael Yoder
Tomas Pfister
TTAAI4TS
52
21
0
04 Feb 2022
A Note on "Assessing Generalization of SGD via Disagreement"
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedMLUQCV
64
16
0
03 Feb 2022
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
K. Wagstaff
Thomas G. Dietterich
76
1
0
03 Feb 2022
UQGAN: A Unified Model for Uncertainty Quantification of Deep
  Classifiers trained via Conditional GANs
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
Philipp Oberdiek
G. Fink
Matthias Rottmann
OODD
121
16
0
31 Jan 2022
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning
Emilio Dorigatti
Jann Goschenhofer
B. Schubert
Mina Rezaei
Bernd Bischl
50
3
0
31 Jan 2022
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Joseph Gesnouin
Steve Pechberti
B. Stanciulescu
Fabien Moutarde
65
12
0
29 Jan 2022
Monitoring Model Deterioration with Explainable Uncertainty Estimation
  via Non-parametric Bootstrap
Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap
Carlos Mougan
Dan Saattrup Nielsen
102
15
0
27 Jan 2022
Improving robustness and calibration in ensembles with diversity
  regularization
Improving robustness and calibration in ensembles with diversity regularization
H. A. Mehrtens
Camila González
Anirban Mukhopadhyay
UQCV
54
7
0
26 Jan 2022
Robust uncertainty estimates with out-of-distribution pseudo-inputs
  training
Robust uncertainty estimates with out-of-distribution pseudo-inputs training
Pierre Segonne
Yevgen Zainchkovskyy
Søren Hauberg
UQCVOOD
26
1
0
15 Jan 2022
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
Behnam Neyshabur
Hanie Sedghi
OODDOOD
97
131
0
11 Jan 2022
SpectraNet: Learned Recognition of Artificial Satellites From High
  Contrast Spectroscopic Imagery
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery
J. Gazak
Ian McQuaid
R. Swindle
M. Phelps
Justin Fletcher
54
16
0
10 Jan 2022
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Vincent Mai
Kaustubh Mani
Liam Paull
83
37
0
05 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the
  Statistical Mechanics of Deep Neural Networks
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
75
0
0
03 Jan 2022
Impact of class imbalance on chest x-ray classifiers: towards better
  evaluation practices for discrimination and calibration performance
Impact of class imbalance on chest x-ray classifiers: towards better evaluation practices for discrimination and calibration performance
Candelaria Mosquera
Luciana Ferrer
Diego H. Milone
D.R. Luna
Enzo Ferrante
44
3
0
23 Dec 2021
Latent Time Neural Ordinary Differential Equations
Latent Time Neural Ordinary Differential Equations
Srinivas Anumasa
P. K. Srijith
BDL
41
5
0
23 Dec 2021
Maximum Entropy on Erroneous Predictions (MEEP): Improving model
  calibration for medical image segmentation
Maximum Entropy on Erroneous Predictions (MEEP): Improving model calibration for medical image segmentation
Agostina J. Larrazabal
Cesar E. Martínez
Jose Dolz
Enzo Ferrante
106
15
0
22 Dec 2021
Classifier Calibration: A survey on how to assess and improve predicted
  class probabilities
Classifier Calibration: A survey on how to assess and improve predicted class probabilities
Telmo de Menezes e Silva Filho
Hao Song
Miquel Perelló Nieto
Raúl Santos-Rodríguez
Meelis Kull
Peter A. Flach
186
85
0
20 Dec 2021
Benchmarking Uncertainty Quantification on Biosignal Classification
  Tasks under Dataset Shift
Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift
Tong Xia
Jing Han
Cecilia Mascolo
OOD
84
11
0
16 Dec 2021
Sample-Efficient Reinforcement Learning via Conservative Model-Based
  Actor-Critic
Sample-Efficient Reinforcement Learning via Conservative Model-Based Actor-Critic
Zhihai Wang
Jie Wang
Qi Zhou
Bin Li
Houqiang Li
71
34
0
16 Dec 2021
Measure and Improve Robustness in NLP Models: A Survey
Measure and Improve Robustness in NLP Models: A Survey
Xuezhi Wang
Haohan Wang
Diyi Yang
300
139
0
15 Dec 2021
On The Reliability Of Machine Learning Applications In Manufacturing
  Environments
On The Reliability Of Machine Learning Applications In Manufacturing Environments
Nicolas Jourdan
S. Sen
E. J. Husom
Enrique Garcia-Ceja
Tobias Biegel
J. Metternich
OOD
78
9
0
13 Dec 2021
Eigenspace Restructuring: a Principle of Space and Frequency in Neural
  Networks
Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks
Lechao Xiao
110
22
0
10 Dec 2021
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures
Dan Hendrycks
Andy Zou
Mantas Mazeika
Leonard Tang
Yue Liu
Basel Alomair
Jacob Steinhardt
UQCV
59
149
0
09 Dec 2021
On the Effectiveness of Mode Exploration in Bayesian Model Averaging for
  Neural Networks
On the Effectiveness of Mode Exploration in Bayesian Model Averaging for Neural Networks
J. Holodnak
Allan B. Wollaber
UQCVBDL
34
0
0
07 Dec 2021
Benchmark for Out-of-Distribution Detection in Deep Reinforcement
  Learning
Benchmark for Out-of-Distribution Detection in Deep Reinforcement Learning
Aaqib Parvez Mohammed
Matias Valdenegro-Toro
OODOffRL
56
10
0
05 Dec 2021
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior
  Predictive Checks with Deep Learning
Why Calibration Error is Wrong Given Model Uncertainty: Using Posterior Predictive Checks with Deep Learning
Achintya Gopal
UQCV
101
1
0
02 Dec 2021
The Devil is in the Margin: Margin-based Label Smoothing for Network
  Calibration
The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration
Bingyuan Liu
Ismail Ben Ayed
Adrian Galdran
Jose Dolz
UQCV
109
72
0
30 Nov 2021
ExCon: Explanation-driven Supervised Contrastive Learning for Image
  Classification
ExCon: Explanation-driven Supervised Contrastive Learning for Image Classification
Zhibo Zhang
Jongseong Jang
C. Trabelsi
Ruiwen Li
Scott Sanner
Yeonjeong Jeong
Dongsub Shim
39
4
0
28 Nov 2021
Country-wide Retrieval of Forest Structure From Optical and SAR
  Satellite Imagery With Deep Ensembles
Country-wide Retrieval of Forest Structure From Optical and SAR Satellite Imagery With Deep Ensembles
Alexander Becker
S. Russo
Stefano Puliti
Nico Lang
Konrad Schindler
Jan Dirk Wegner
75
45
0
25 Nov 2021
Robust Object Detection with Multi-input Multi-output Faster R-CNN
Robust Object Detection with Multi-input Multi-output Faster R-CNN
Sebastian Cygert
A. Czyżewski
ObjD
32
2
0
25 Nov 2021
Transferability Metrics for Selecting Source Model Ensembles
Transferability Metrics for Selecting Source Model Ensembles
A. Agostinelli
J. Uijlings
Thomas Mensink
V. Ferrari
77
25
0
25 Nov 2021
Reliable Graph Neural Networks for Drug Discovery Under Distributional
  Shift
Reliable Graph Neural Networks for Drug Discovery Under Distributional Shift
Kehang Han
Balaji Lakshminarayanan
J. Liu
OODGNN
75
33
0
25 Nov 2021
Towards Fewer Annotations: Active Learning via Region Impurity and
  Prediction Uncertainty for Domain Adaptive Semantic Segmentation
Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation
Binhui Xie
Longhui Yuan
Shuang Li
Chi Harold Liu
Xinjing Cheng
UQCV
93
92
0
25 Nov 2021
ReAct: Out-of-distribution Detection With Rectified Activations
ReAct: Out-of-distribution Detection With Rectified Activations
Yiyou Sun
Chuan Guo
Yixuan Li
OODD
120
487
0
24 Nov 2021
DAPPER: Label-Free Performance Estimation after Personalization for
  Heterogeneous Mobile Sensing
DAPPER: Label-Free Performance Estimation after Personalization for Heterogeneous Mobile Sensing
Taesik Gong
Yewon Kim
Adiba Orzikulova
Yunxin Liu
Sung Ju Hwang
Jinwoo Shin
Sung-Ju Lee
74
9
0
22 Nov 2021
DICE: Leveraging Sparsification for Out-of-Distribution Detection
DICE: Leveraging Sparsification for Out-of-Distribution Detection
Yiyou Sun
Yixuan Li
OODD
162
163
0
18 Nov 2021
Selective Ensembles for Consistent Predictions
Selective Ensembles for Consistent Predictions
Emily Black
Klas Leino
Matt Fredrikson
64
23
0
16 Nov 2021
On Efficient Uncertainty Estimation for Resource-Constrained Mobile
  Applications
On Efficient Uncertainty Estimation for Resource-Constrained Mobile Applications
J. Rock
Tiago Azevedo
R. D. Jong
Daniel Ruiz-Munoz
Partha P. Maji
UQCV
56
5
0
11 Nov 2021
Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
  Distributions
Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma Distributions
Huan Ma
Zongbo Han
Changqing Zhang
Huazhu Fu
Qiufeng Wang
Q. Hu
EDLUQCV
131
44
0
11 Nov 2021
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in
  Deep Learning
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
Runa Eschenhagen
Erik A. Daxberger
Philipp Hennig
Agustinus Kristiadi
UQCVBDL
73
23
0
05 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCVUD
124
61
0
03 Nov 2021
Previous
123...131415...202122
Next