ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

42 / 1,042 papers shown
Title
On the Role of Dataset Quality and Heterogeneity in Model Confidence
On the Role of Dataset Quality and Heterogeneity in Model Confidence
Yuan Zhao
Jiasi Chen
Samet Oymak
27
12
0
23 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
56
445
0
21 Feb 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time
  Augmentation
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
27
84
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
641
0
20 Feb 2020
Uncertainty Estimation in Autoregressive Structured Prediction
Uncertainty Estimation in Autoregressive Structured Prediction
A. Malinin
Mark Gales
UQLM
22
9
0
18 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under
  Intermittent Client Availability
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
49
37
0
18 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
32
483
0
17 Feb 2020
Active Bayesian Assessment for Black-Box Classifiers
Active Bayesian Assessment for Black-Box Classifiers
Disi Ji
Robert L Logan IV
Padhraic Smyth
M. Steyvers
UQCV
8
15
0
16 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
35
314
0
15 Feb 2020
Learning to Predict Error for MRI Reconstruction
Learning to Predict Error for MRI Reconstruction
Shi Hu
Nicola Pezzotti
Max Welling
UQCV
6
14
0
13 Feb 2020
CEB Improves Model Robustness
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Semi-Supervised Class Discovery
Semi-Supervised Class Discovery
Jeremy Nixon
J. Liu
David Berthelot
20
2
0
10 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian
  Mean Field Posteriors in Bayesian Neural Networks
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
31
45
0
07 Feb 2020
The Case for Bayesian Deep Learning
The Case for Bayesian Deep Learning
A. Wilson
UQCV
BDL
OOD
17
110
0
29 Jan 2020
Training Normalizing Flows with the Information Bottleneck for
  Competitive Generative Classification
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
Lynton Ardizzone
Radek Mackowiak
Ullrich Kothe
Carsten Rother
UQCV
10
4
0
17 Jan 2020
Hydra: Preserving Ensemble Diversity for Model Distillation
Hydra: Preserving Ensemble Diversity for Model Distillation
Linh-Tam Tran
Bastiaan S. Veeling
Kevin Roth
J. Swiatkowski
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Sebastian Nowozin
Rodolphe Jenatton
21
58
0
14 Jan 2020
On-manifold Adversarial Data Augmentation Improves Uncertainty
  Calibration
On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
UQCV
27
30
0
16 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
Individual predictions matter: Assessing the effect of data ordering in
  training fine-tuned CNNs for medical imaging
Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging
J. Zech
Jessica Zosa Forde
Michael L. Littman
21
5
0
08 Dec 2019
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
48
1,280
0
05 Dec 2019
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
38
619
0
05 Dec 2019
Hierarchical Indian Buffet Neural Networks for Bayesian Continual
  Learning
Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning
Samuel Kessler
Vu Nguyen
S. Zohren
Stephen J. Roberts
BDL
16
23
0
04 Dec 2019
A Novel Unsupervised Post-Processing Calibration Method for DNNS with
  Robustness to Domain Shift
A Novel Unsupervised Post-Processing Calibration Method for DNNS with Robustness to Domain Shift
A. Mozafari
H. Gomes
Christian Gagné
14
0
0
25 Nov 2019
Parameters Estimation for the Cosmic Microwave Background with Bayesian
  Neural Networks
Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks
Héctor J. Hortúa
Riccardo Volpi
D. Marinelli
Luigi Malagò
BDL
13
22
0
19 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
22
12
0
19 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with
  Deep Generative Models
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
38
52
0
18 Nov 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural
  Architecture Search
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
45
314
0
25 Oct 2019
We Know Where We Don't Know: 3D Bayesian CNNs for Credible Geometric
  Uncertainty
We Know Where We Don't Know: 3D Bayesian CNNs for Credible Geometric Uncertainty
T. LaBonte
Carianne Martinez
S. Roberts
UQCV
3DV
20
31
0
23 Oct 2019
Detecting Underspecification with Local Ensembles
Detecting Underspecification with Local Ensembles
David Madras
James Atwood
Alexander DÁmour
35
4
0
21 Oct 2019
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
6
295
0
08 Oct 2019
Uncertainty Quantification with Statistical Guarantees in End-to-End
  Autonomous Driving Control
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
18
105
0
21 Sep 2019
Open Set Recognition Through Deep Neural Network Uncertainty: Does
  Out-of-Distribution Detection Require Generative Classifiers?
Open Set Recognition Through Deep Neural Network Uncertainty: Does Out-of-Distribution Detection Require Generative Classifiers?
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Visvanathan Ramesh
UQCV
EDL
13
40
0
26 Aug 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
22
9
0
12 Jul 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
50
716
0
07 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
30
295
0
04 Jun 2019
Unified Probabilistic Deep Continual Learning through Generative Replay
  and Open Set Recognition
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Yongwon Hong
Visvanathan Ramesh
UQCV
BDL
27
40
0
28 May 2019
Field-aware Calibration: A Simple and Empirically Strong Method for
  Reliable Probabilistic Predictions
Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions
Feiyang Pan
Xiang Ao
Pingzhong Tang
Min Lu
Dapeng Liu
Lei Xiao
Qing He
30
22
0
26 May 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
27
231
0
30 Apr 2019
A Roadmap for Robust End-to-End Alignment
A Roadmap for Robust End-to-End Alignment
L. Hoang
28
1
0
04 Sep 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
Previous
123...192021