Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02530
Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"
42 / 1,042 papers shown
Title
On the Role of Dataset Quality and Heterogeneity in Model Confidence
Yuan Zhao
Jiasi Chen
Samet Oymak
27
12
0
23 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
56
445
0
21 Feb 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
27
84
0
21 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
641
0
20 Feb 2020
Uncertainty Estimation in Autoregressive Structured Prediction
A. Malinin
Mark Gales
UQLM
22
9
0
18 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
49
37
0
18 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
32
483
0
17 Feb 2020
Active Bayesian Assessment for Black-Box Classifiers
Disi Ji
Robert L Logan IV
Padhraic Smyth
M. Steyvers
UQCV
8
15
0
16 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
35
314
0
15 Feb 2020
Learning to Predict Error for MRI Reconstruction
Shi Hu
Nicola Pezzotti
Max Welling
UQCV
6
14
0
13 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Semi-Supervised Class Discovery
Jeremy Nixon
J. Liu
David Berthelot
20
2
0
10 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
31
45
0
07 Feb 2020
The Case for Bayesian Deep Learning
A. Wilson
UQCV
BDL
OOD
17
110
0
29 Jan 2020
Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification
Lynton Ardizzone
Radek Mackowiak
Ullrich Kothe
Carsten Rother
UQCV
10
4
0
17 Jan 2020
Hydra: Preserving Ensemble Diversity for Model Distillation
Linh-Tam Tran
Bastiaan S. Veeling
Kevin Roth
J. Swiatkowski
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Sebastian Nowozin
Rodolphe Jenatton
21
58
0
14 Jan 2020
On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
UQCV
27
30
0
16 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging
J. Zech
Jessica Zosa Forde
Michael L. Littman
21
5
0
08 Dec 2019
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
48
1,280
0
05 Dec 2019
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
38
619
0
05 Dec 2019
Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning
Samuel Kessler
Vu Nguyen
S. Zohren
Stephen J. Roberts
BDL
16
23
0
04 Dec 2019
A Novel Unsupervised Post-Processing Calibration Method for DNNS with Robustness to Domain Shift
A. Mozafari
H. Gomes
Christian Gagné
14
0
0
25 Nov 2019
Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks
Héctor J. Hortúa
Riccardo Volpi
D. Marinelli
Luigi Malagò
BDL
13
22
0
19 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
22
12
0
19 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
38
52
0
18 Nov 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
45
314
0
25 Oct 2019
We Know Where We Don't Know: 3D Bayesian CNNs for Credible Geometric Uncertainty
T. LaBonte
Carianne Martinez
S. Roberts
UQCV
3DV
20
31
0
23 Oct 2019
Detecting Underspecification with Local Ensembles
David Madras
James Atwood
Alexander DÁmour
35
4
0
21 Oct 2019
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
6
295
0
08 Oct 2019
Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Matthew Wicker
Luca Laurenti
L. Cardelli
Y. Gal
Marta Z. Kwiatkowska
BDL
18
105
0
21 Sep 2019
Open Set Recognition Through Deep Neural Network Uncertainty: Does Out-of-Distribution Detection Require Generative Classifiers?
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Visvanathan Ramesh
UQCV
EDL
13
40
0
26 Aug 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
22
9
0
12 Jul 2019
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
50
716
0
07 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
30
295
0
04 Jun 2019
Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition
Martin Mundt
Iuliia Pliushch
Sagnik Majumder
Yongwon Hong
Visvanathan Ramesh
UQCV
BDL
27
40
0
28 May 2019
Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions
Feiyang Pan
Xiang Ao
Pingzhong Tang
Min Lu
Dapeng Liu
Lei Xiao
Qing He
30
22
0
26 May 2019
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
27
231
0
30 Apr 2019
A Roadmap for Robust End-to-End Alignment
L. Hoang
28
1
0
04 Sep 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
Previous
1
2
3
...
19
20
21