Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 867 papers shown
Title
First-Order Preconditioning via Hypergradient Descent
Theodore H. Moskovitz
Rui Wang
Janice Lan
Sanyam Kapoor
Thomas Miconi
J. Yosinski
Aditya Rawal
AI4CE
79
8
0
18 Oct 2019
Improving the convergence of SGD through adaptive batch sizes
Scott Sievert
Zachary B. Charles
ODL
74
8
0
18 Oct 2019
Error Lower Bounds of Constant Step-size Stochastic Gradient Descent
Zhiyan Ding
Yiding Chen
Qin Li
Xiaojin Zhu
54
4
0
18 Oct 2019
Adaptive Step Sizes in Variance Reduction via Regularization
Bingcong Li
G. Giannakis
50
5
0
15 Oct 2019
Predicting dynamical system evolution with residual neural networks
Artem Chashchin
M. Botchev
Ivan Oseledets
G. Ovchinnikov
AI4TS
AI4CE
45
3
0
11 Oct 2019
Straggler-Agnostic and Communication-Efficient Distributed Primal-Dual Algorithm for High-Dimensional Data Mining
Zhouyuan Huo
Heng-Chiao Huang
FedML
47
5
0
09 Oct 2019
The Complexity of Finding Stationary Points with Stochastic Gradient Descent
Yoel Drori
Shigehito Shimizu
94
64
0
04 Oct 2019
Partial differential equation regularization for supervised machine learning
Jillian R. Fisher
56
2
0
03 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
99
201
0
01 Oct 2019
Conservative set valued fields, automatic differentiation, stochastic gradient method and deep learning
Jérôme Bolte
Edouard Pauwels
104
129
0
23 Sep 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
90
457
0
23 Sep 2019
Human Position Detection & Tracking with On-robot Time-of-Flight Laser Ranging Sensors
Sarthak Arora
Shitij Kumar
F. Sahin
14
2
0
21 Sep 2019
Empirical study towards understanding line search approximations for training neural networks
Younghwan Chae
D. Wilke
110
11
0
15 Sep 2019
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Qian Yang
Zhouyuan Huo
Wenlin Wang
Heng-Chiao Huang
Lawrence Carin
57
9
0
14 Sep 2019
Shapley Interpretation and Activation in Neural Networks
Yadong Li
Xin Cui
TDI
FAtt
LLMSV
50
3
0
13 Sep 2019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
80
20
0
11 Sep 2019
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
87
42
0
09 Sep 2019
Distributed Deep Learning with Event-Triggered Communication
Jemin George
Prudhvi K. Gurram
56
16
0
08 Sep 2019
Distributed Training of Embeddings using Graph Analytics
G. Gill
Roshan Dathathri
Saeed Maleki
Madan Musuvathi
Todd Mytkowicz
Olli Saarikivi The University of Texas at Austin
GNN
26
1
0
08 Sep 2019
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
68
22
0
03 Sep 2019
Linear Convergence of Adaptive Stochastic Gradient Descent
Yuege Xie
Xiaoxia Wu
Rachel A. Ward
74
45
0
28 Aug 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
97
21
0
15 Aug 2019
Adaptive Ensemble of Classifiers with Regularization for Imbalanced Data Classification
Chen Wang
Qin Yu
Kai Zhou
D. Hui
Xiaofeng Gong
Ruisen Luo
141
22
0
09 Aug 2019
Bias of Homotopic Gradient Descent for the Hinge Loss
Denali Molitor
Deanna Needell
Rachel A. Ward
39
6
0
26 Jul 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
134
8
0
24 Jul 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
Constantine Caramanis
Sanjay Shakkottai
80
3
0
23 Jul 2019
Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography
Harbir Antil
Z. Di
R. Khatri
58
51
0
22 Jul 2019
Speeding Up Iterative Closest Point Using Stochastic Gradient Descent
F. A. Maken
F. Ramos
Lionel Ott
3DPC
37
13
0
22 Jul 2019
Adaptive Weight Decay for Deep Neural Networks
Kensuke Nakamura
Byung-Woo Hong
63
43
0
21 Jul 2019
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Helen Zhou
65
50
0
21 Jul 2019
An Evolutionary Algorithm of Linear complexity: Application to Training of Deep Neural Networks
S. I. Valdez
A. R. Domínguez
ODL
29
1
0
12 Jul 2019
Adaptive Deep Learning for High-Dimensional Hamilton-Jacobi-Bellman Equations
Tenavi Nakamura-Zimmerer
Q. Gong
W. Kang
134
134
0
11 Jul 2019
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Suyun Liu
Luis Nunes Vicente
167
75
0
10 Jul 2019
Ordered SGD: A New Stochastic Optimization Framework for Empirical Risk Minimization
Kenji Kawaguchi
Haihao Lu
ODL
100
64
0
09 Jul 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
91
113
0
09 Jul 2019
Learning joint lesion and tissue segmentation from task-specific hetero-modal datasets
Reuben Dorent
Wenqi Li
J. Ekanayake
Sebastien Ourselin
Tom Vercauteren
55
4
0
07 Jul 2019
ReLU Networks as Surrogate Models in Mixed-Integer Linear Programs
B. Grimstad
H. Andersson
64
144
0
06 Jul 2019
Precision annealing Monte Carlo methods for statistical data assimilation and machine learning
Zheng Fang
Adrian S. Wong
Kangbo Hao
Alexander J. A. Ty
H. Abarbanel
26
1
0
06 Jul 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
94
67
0
03 Jul 2019
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
56
36
0
03 Jul 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
94
31
0
02 Jul 2019
Network-accelerated Distributed Machine Learning Using MLFabric
Raajay Viswanathan
Aditya Akella
AI4CE
42
4
0
30 Jun 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
72
15
0
27 Jun 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
128
128
0
23 Jun 2019
A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators
Xun Zhang
W. Haskell
Z. Ye
51
3
0
22 Jun 2019
Fully Decoupled Neural Network Learning Using Delayed Gradients
Huiping Zhuang
Yi Wang
Qinglai Liu
Shuai Zhang
Zhiping Lin
FedML
83
31
0
21 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
88
566
0
17 Jun 2019
Optimizing Pipelined Computation and Communication for Latency-Constrained Edge Learning
N. Skatchkovsky
Osvaldo Simeone
52
17
0
11 Jun 2019
Stochastic In-Face Frank-Wolfe Methods for Non-Convex Optimization and Sparse Neural Network Training
Paul Grigas
Alfonso Lobos
Nathan Vermeersch
86
5
0
09 Jun 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
167
247
0
06 Jun 2019
Previous
1
2
3
...
12
13
14
...
16
17
18
Next