Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Non-Asymptotic Analysis of Online Multiplicative Stochastic Gradient Descent
Riddhiman Bhattacharya
Tiefeng Jiang
21
0
0
14 Dec 2021
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
A Novel Sequential Coreset Method for Gradient Descent Algorithms
Jiawei Huang
Ru Huang
Wenjie Liu
N. Freris
Huihua Ding
29
16
0
05 Dec 2021
Regularized Newton Method with Global
O
(
1
/
k
2
)
O(1/k^2)
O
(
1/
k
2
)
Convergence
Konstantin Mishchenko
17
39
0
03 Dec 2021
On Large Batch Training and Sharp Minima: A Fokker-Planck Perspective
Xiaowu Dai
Yuhua Zhu
27
4
0
02 Dec 2021
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
30
5
0
01 Dec 2021
Adaptive First- and Second-Order Algorithms for Large-Scale Machine Learning
Sanae Lotfi
Tiphaine Bonniot de Ruisselet
D. Orban
Andrea Lodi
ODL
27
1
0
29 Nov 2021
An Optimization Framework for Federated Edge Learning
Yangchen Li
Ying Cui
Vincent K. N. Lau
FedML
19
7
0
26 Nov 2021
Random-reshuffled SARAH does not need a full gradient computations
Aleksandr Beznosikov
Martin Takáč
31
7
0
26 Nov 2021
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
Miao Zhang
Jilin Hu
Steven W. Su
Shirui Pan
Xiaojun Chang
B. Yang
Gholamreza Haffari
OOD
45
15
0
25 Nov 2021
MIO : Mutual Information Optimization using Self-Supervised Binary Contrastive Learning
Siladittya Manna
Umapada Pal
Saumik Bhattacharya
SSL
35
1
0
24 Nov 2021
Simple Stochastic and Online Gradient Descent Algorithms for Pairwise Learning
Zhenhuan Yang
Yunwen Lei
Puyu Wang
Tianbao Yang
Yiming Ying
16
26
0
23 Nov 2021
Variance Reduction in Deep Learning: More Momentum is All You Need
Lionel Tondji
S. Kashubin
Moustapha Cissé
ODL
21
1
0
23 Nov 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
24
3
0
19 Nov 2021
Online Estimation and Optimization of Utility-Based Shortfall Risk
Vishwajit Hegde
Arvind S. Menon
L. A. Prashanth
Krishna Jagannathan
24
2
0
16 Nov 2021
Stochastic Gradient Line Bayesian Optimization for Efficient Noise-Robust Optimization of Parameterized Quantum Circuits
Shiro Tamiya
H. Yamasaki
26
24
0
15 Nov 2021
Bolstering Stochastic Gradient Descent with Model Building
Ş. Birbil
Özgür Martin
Gönenç Onay
Figen Oztoprak
ODL
21
1
0
13 Nov 2021
Stationary Behavior of Constant Stepsize SGD Type Algorithms: An Asymptotic Characterization
Zaiwei Chen
Shancong Mou
S. T. Maguluri
17
13
0
11 Nov 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
28
8
0
11 Nov 2021
Learning Rates for Nonconvex Pairwise Learning
Shaojie Li
Yong Liu
32
2
0
09 Nov 2021
AGGLIO: Global Optimization for Locally Convex Functions
Debojyoti Dey
B. Mukhoty
Purushottam Kar
16
2
0
06 Nov 2021
Finding the Optimal Dynamic Treatment Regime Using Smooth Fisher Consistent Surrogate Loss
Nilanjana Laha
Aaron Sonabend-W
Rajarshi Mukherjee
Tianxi Cai
14
1
0
03 Nov 2021
An Asymptotic Analysis of Minibatch-Based Momentum Methods for Linear Regression Models
Yuan Gao
Xuening Zhu
Haobo Qi
Guodong Li
Riquan Zhang
Hansheng Wang
23
3
0
02 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
32
14
0
01 Nov 2021
Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow
Haitz Sáez de Ocáriz Borde
David Sondak
P. Protopapas
AI4CE
22
3
0
30 Oct 2021
Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima
Guangyuan Shi
Jiaxin Chen
Wenlong Zhang
Li-Ming Zhan
Xiao-Ming Wu
CLL
36
152
0
30 Oct 2021
Dynamic Differential-Privacy Preserving SGD
Jian Du
Song Li
Xiangyi Chen
Siheng Chen
Mingyi Hong
27
31
0
30 Oct 2021
Efficient Meta Subspace Optimization
Yoni Choukroun
Michael Katz
25
1
0
28 Oct 2021
How Important is Importance Sampling for Deep Budgeted Training?
Eric Arazo
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
23
7
0
27 Oct 2021
Eigencurve: Optimal Learning Rate Schedule for SGD on Quadratic Objectives with Skewed Hessian Spectrums
Rui Pan
Haishan Ye
Tong Zhang
22
14
0
27 Oct 2021
Accelerated Almost-Sure Convergence Rates for Nonconvex Stochastic Gradient Descent using Stochastic Learning Rates
Theodoros Mamalis
D. Stipanović
R. Tao
26
2
0
25 Oct 2021
Boosting Federated Learning in Resource-Constrained Networks
Mohamed Yassine Boukhari
Akash Dhasade
Anne-Marie Kermarrec
Rafael Pires
Othmane Safsafi
Rishi Sharma
FedML
12
0
0
21 Oct 2021
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
Sharan Vaswani
Benjamin Dubois-Taine
Reza Babanezhad
53
11
0
21 Oct 2021
Utilizing Redundancy in Cost Functions for Resilience in Distributed Optimization and Learning
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
32
0
0
21 Oct 2021
A Data-Centric Optimization Framework for Machine Learning
Oliver Rausch
Tal Ben-Nun
Nikoli Dryden
Andrei Ivanov
Shigang Li
Torsten Hoefler
AI4CE
22
16
0
20 Oct 2021
Stochastic Learning Rate Optimization in the Stochastic Approximation and Online Learning Settings
Theodoros Mamalis
D. Stipanović
P. Voulgaris
17
4
0
20 Oct 2021
Optimal randomized classification trees
R. Blanquero
E. Carrizosa
Antonios Tsourdos
Dolores Romero Morales
19
47
0
19 Oct 2021
Training Deep Neural Networks with Adaptive Momentum Inspired by the Quadratic Optimization
Tao Sun
Huaming Ling
Zuoqiang Shi
Dongsheng Li
Bao Wang
ODL
27
13
0
18 Oct 2021
A theoretical and empirical study of new adaptive algorithms with additional momentum steps and shifted updates for stochastic non-convex optimization
C. Alecsa
30
0
0
16 Oct 2021
Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining
Tim Kaler
Nickolas Stathas
Anne Ouyang
A. Iliopoulos
Tao B. Schardl
C. E. Leiserson
Jie Chen
GNN
70
53
0
16 Oct 2021
Resource-constrained Federated Edge Learning with Heterogeneous Data: Formulation and Analysis
Yi Liu
Yuanshao Zhu
James J. Q. Yu
FedML
32
28
0
14 Oct 2021
Adaptive Differentially Private Empirical Risk Minimization
Xiaoxia Wu
Lingxiao Wang
Irina Cristali
Quanquan Gu
Rebecca Willett
40
6
0
14 Oct 2021
Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous Multi-GPU Servers
Yujing Ma
Florin Rusu
Kesheng Wu
A. Sim
46
3
0
13 Oct 2021
Gradual Federated Learning with Simulated Annealing
L. Nguyen
Junhan Kim
B. Shim
FedML
21
10
0
11 Oct 2021
Convergence of Random Reshuffling Under The Kurdyka-Łojasiewicz Inequality
Xiao Li
Andre Milzarek
Junwen Qiu
26
20
0
10 Oct 2021
Combining Differential Privacy and Byzantine Resilience in Distributed SGD
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
FedML
43
4
0
08 Oct 2021
Does Momentum Change the Implicit Regularization on Separable Data?
Bohan Wang
Qi Meng
Huishuai Zhang
Ruoyu Sun
Wei Chen
Zhirui Ma
Tie-Yan Liu
47
15
0
08 Oct 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
64
40
0
07 Oct 2021
On the Generalization of Models Trained with SGD: Information-Theoretic Bounds and Implications
Ziqiao Wang
Yongyi Mao
FedML
MLT
39
22
0
07 Oct 2021
Global Convergence and Stability of Stochastic Gradient Descent
V. Patel
Shushu Zhang
Bowen Tian
33
22
0
04 Oct 2021
Previous
1
2
3
...
12
13
14
...
27
28
29
Next