ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09437
4
3

A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators

22 June 2019
Xun Zhang
W. Haskell
Z. Ye
ArXivPDFHTML
Abstract

It is common to encounter large-scale monotone inclusion problems where the objective has a finite sum structure. We develop a general framework for variance-reduced forward-backward splitting algorithms for this problem. This framework includes a number of existing deterministic and variance-reduced algorithms for function minimization as special cases, and it is also applicable to more general problems such as saddle-point problems and variational inequalities. With a carefully constructed Lyapunov function, we show that the algorithms covered by our framework enjoy a linear convergence rate in expectation under mild assumptions. We further consider Catalyst acceleration and asynchronous implementation to reduce the algorithmic complexity and computation time. We apply our proposed framework to a policy evaluation problem and a strongly monotone two-player game, both of which fall outside of function minimization.

View on arXiv
Comments on this paper