Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Linear Regression with Distributed Learning: A Generalization Error Perspective
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
FedML
14
10
0
22 Jan 2021
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
36
57
0
21 Jan 2021
Learning DNN networks using un-rectifying ReLU with compressed sensing application
W. Hwang
Shih-Shuo Tung
16
2
0
18 Jan 2021
Towards Practical Adam: Non-Convexity, Convergence Theory, and Mini-Batch Acceleration
Congliang Chen
Li Shen
Fangyu Zou
Wei Liu
46
29
0
14 Jan 2021
Machine learning classification of non-Markovian noise disturbing quantum dynamics
Stefano Martina
S. Gherardini
Filippo Caruso
14
8
0
08 Jan 2021
Delayed Projection Techniques for Linearly Constrained Problems: Convergence Rates, Acceleration, and Applications
Xiang Li
Zhihua Zhang
30
4
0
05 Jan 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
42
2
0
04 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
36
25
0
04 Jan 2021
An iterative K-FAC algorithm for Deep Learning
Yingshi Chen
ODL
22
1
0
01 Jan 2021
CADA: Communication-Adaptive Distributed Adam
Tianyi Chen
Ziye Guo
Yuejiao Sun
W. Yin
ODL
14
24
0
31 Dec 2020
Unbiased Gradient Estimation for Distributionally Robust Learning
Soumyadip Ghosh
M. Squillante
OOD
26
7
0
22 Dec 2020
Regularization in network optimization via trimmed stochastic gradient descent with noisy label
Kensuke Nakamura
Bong-Soo Sohn
Kyoung-Jae Won
Byung-Woo Hong
NoLa
17
0
0
21 Dec 2020
Image-Based Jet Analysis
Michael Kagan
30
7
0
17 Dec 2020
Are we Forgetting about Compositional Optimisers in Bayesian Optimisation?
Antoine Grosnit
Alexander I. Cowen-Rivers
Rasul Tutunov
Ryan-Rhys Griffiths
Jun Wang
Haitham Bou-Ammar
21
13
0
15 Dec 2020
Better scalability under potentially heavy-tailed feedback
Matthew J. Holland
28
1
0
14 Dec 2020
Concept Drift Monitoring and Diagnostics of Supervised Learning Models via Score Vectors
Kungang Zhang
A. Bui
D. Apley
14
10
0
12 Dec 2020
Structured learning of rigid-body dynamics: A survey and unified view from a robotics perspective
A. R. Geist
Sebastian Trimpe
AI4CE
24
17
0
11 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
38
77
0
11 Dec 2020
Stochastic Damped L-BFGS with Controlled Norm of the Hessian Approximation
Sanae Lotfi
Tiphaine Bonniot de Ruisselet
D. Orban
Andrea Lodi
ODL
12
6
0
10 Dec 2020
Asymptotic study of stochastic adaptive algorithm in non-convex landscape
S. Gadat
Ioana Gavra
21
18
0
10 Dec 2020
DONE: Distributed Approximate Newton-type Method for Federated Edge Learning
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
Wei Bao
A. R. Balef
B. Zhou
Albert Y. Zomaya
FedML
26
15
0
10 Dec 2020
Adaptive Sequential SAA for Solving Two-stage Stochastic Linear Programs
R. Pasupathy
Yongjia Song
13
1
0
07 Dec 2020
Block majorization-minimization with diminishing radius for constrained nonconvex optimization
Hanbaek Lyu
Yuchen Li
23
10
0
07 Dec 2020
When Do Curricula Work?
Xiaoxia Wu
Ethan Dyer
Behnam Neyshabur
33
114
0
05 Dec 2020
Characterization of Excess Risk for Locally Strongly Convex Population Risk
Mingyang Yi
Ruoyu Wang
Zhi-Ming Ma
22
2
0
04 Dec 2020
Learning with risks based on M-location
Matthew J. Holland
16
10
0
04 Dec 2020
Stochastic Gradient Descent with Nonlinear Conjugate Gradient-Style Adaptive Momentum
Bao Wang
Qiang Ye
ODL
49
14
0
03 Dec 2020
Accumulated Decoupled Learning: Mitigating Gradient Staleness in Inter-Layer Model Parallelization
Huiping Zhuang
Zhiping Lin
Kar-Ann Toh
42
4
0
03 Dec 2020
Convergence of Gradient Algorithms for Nonconvex C^{1+alpha} Cost Functions
Zixuan Wang
Shanjian Tang
18
0
0
01 Dec 2020
A Hypergradient Approach to Robust Regression without Correspondence
Yujia Xie
Yongyi Mao
Simiao Zuo
Hongteng Xu
X. Ye
T. Zhao
H. Zha
28
15
0
30 Nov 2020
Is Support Set Diversity Necessary for Meta-Learning?
Amrith Rajagopal Setlur
Oscar Li
Virginia Smith
37
16
0
28 Nov 2020
Sequential convergence of AdaGrad algorithm for smooth convex optimization
Cheik Traoré
Edouard Pauwels
16
21
0
24 Nov 2020
SMG: A Shuffling Gradient-Based Method with Momentum
Trang H. Tran
Lam M. Nguyen
Quoc Tran-Dinh
25
21
0
24 Nov 2020
On the Convergence of Continuous Constrained Optimization for Structure Learning
Ignavier Ng
Sébastien Lachapelle
Nan Rosemary Ke
Simon Lacoste-Julien
Kun Zhang
36
38
0
23 Nov 2020
Continuous-Time Convergence Rates in Potential and Monotone Games
Bolin Gao
Lacra Pavel
8
8
0
21 Nov 2020
Convergence Analysis of Homotopy-SGD for non-convex optimization
Matilde Gargiani
Andrea Zanelli
Quoc Tran-Dinh
Moritz Diehl
Frank Hutter
6
3
0
20 Nov 2020
On the asymptotic rate of convergence of Stochastic Newton algorithms and their Weighted Averaged versions
Claire Boyer
Antoine Godichon-Baggioni
6
18
0
19 Nov 2020
MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for Training Large Graph Convolutional Networks
Tao Huang
Yihan Zhang
Jiajing Wu
Junyuan Fang
Zibin Zheng
GNN
19
2
0
17 Nov 2020
Policy design in experiments with unknown interference
Davide Viviano
Jess Rudder
32
7
0
16 Nov 2020
Accelerating Distributed SGD for Linear Regression using Iterative Pre-Conditioning
Kushal Chakrabarti
Nirupam Gupta
Nikhil Chopra
58
2
0
15 Nov 2020
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
A. Chakraborty
K. Rajawat
Alec Koppel
25
3
0
13 Nov 2020
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
37
26
0
13 Nov 2020
SALR: Sharpness-aware Learning Rate Scheduler for Improved Generalization
Xubo Yue
Maher Nouiehed
Raed Al Kontar
ODL
22
4
0
10 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
49
6
0
09 Nov 2020
Stochastic Approximation for High-frequency Observations in Data Assimilation
Shushu Zhang
V. Patel
30
1
0
05 Nov 2020
Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ali Jadbabaie
A. Makur
Devavrat Shah
35
6
0
04 Nov 2020
On the Convergence of Gradient Descent in GANs: MMD GAN As a Gradient Flow
Youssef Mroueh
Truyen V. Nguyen
31
25
0
04 Nov 2020
Quantized Variational Inference
Amir Dib
17
1
0
04 Nov 2020
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
19
45
0
03 Nov 2020
Asynchronous Parallel Stochastic Quasi-Newton Methods
Qianqian Tong
Guannan Liang
Xingyu Cai
Chunjiang Zhu
J. Bi
ODL
32
9
0
02 Nov 2020
Previous
1
2
3
...
16
17
18
...
27
28
29
Next