Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 867 papers shown
Title
Efficient Subsampled Gauss-Newton and Natural Gradient Methods for Training Neural Networks
Yi Ren
Shiqian Ma
64
37
0
05 Jun 2019
On the Convergence of SARAH and Beyond
Bingcong Li
Meng Ma
G. Giannakis
70
27
0
05 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
132
125
0
05 Jun 2019
The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to be More Effective at Data Analysis
Cynthia Rudin
David Carlson
HAI
128
34
0
04 Jun 2019
A Generic Acceleration Framework for Stochastic Composite Optimization
A. Kulunchakov
Julien Mairal
105
43
0
03 Jun 2019
Scaling Up Quasi-Newton Algorithms: Communication Efficient Distributed SR1
Majid Jahani
M. Nazari
S. Rusakov
A. Berahas
Martin Takávc
75
14
0
30 May 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
101
219
0
29 May 2019
An Inertial Newton Algorithm for Deep Learning
Camille Castera
Jérôme Bolte
Cédric Févotte
Edouard Pauwels
PINN
ODL
117
64
0
29 May 2019
Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization
Yifan Hu
Xin Chen
Niao He
91
36
0
28 May 2019
Recursive Estimation for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
65
33
0
28 May 2019
Finite-Sample Analysis of Nonlinear Stochastic Approximation with Applications in Reinforcement Learning
Zaiwei Chen
Sheng Zhang
Thinh T. Doan
John-Paul Clarke
S. T. Maguluri
146
59
0
27 May 2019
Robustness of accelerated first-order algorithms for strongly convex optimization problems
Hesameddin Mohammadi
Meisam Razaviyayn
M. Jovanović
33
41
0
27 May 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
73
25
0
24 May 2019
Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models: Extension
Yunfei Teng
Wenbo Gao
F. Chalus
A. Choromańska
Shiqian Ma
Adrian Weller
142
12
0
24 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
96
163
0
23 May 2019
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Jingjing Zhang
Osvaldo Simeone
72
32
0
22 May 2019
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
93
758
0
16 May 2019
A Stochastic Gradient Method with Biased Estimation for Faster Nonconvex Optimization
Jia Bi
S. Gunn
61
3
0
13 May 2019
Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints
Mengtian Li
Ersin Yumer
Deva Ramanan
72
49
0
12 May 2019
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
Hao Yu
Rong Jin
81
51
0
10 May 2019
Sparse multiresolution representations with adaptive kernels
Maria Peifer
Luiz F. O. Chamon
Santiago Paternain
Alejandro Ribeiro
48
4
0
07 May 2019
An Adaptive Remote Stochastic Gradient Method for Training Neural Networks
Yushu Chen
Hao Jing
Wenlai Zhao
Zhiqiang Liu
Haohuan Fu
Lián Qiao
Wei Xue
Guangwen Yang
ODL
92
2
0
04 May 2019
Target-Based Temporal Difference Learning
Donghwan Lee
Niao He
OOD
83
32
0
24 Apr 2019
Least Squares Auto-Tuning
Shane T. Barratt
Stephen P. Boyd
MoMe
82
23
0
10 Apr 2019
Generalizing from a Few Examples: A Survey on Few-Shot Learning
Yaqing Wang
Quanming Yao
James T. Kwok
L. Ni
147
1,849
0
10 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
98
101
0
02 Apr 2019
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
133
31
0
28 Mar 2019
OverSketched Newton: Fast Convex Optimization for Serverless Systems
Vipul Gupta
S. Kadhe
T. Courtade
Michael W. Mahoney
Kannan Ramchandran
85
33
0
21 Mar 2019
Noisy Accelerated Power Method for Eigenproblems with Applications
Vien V. Mai
M. Johansson
30
3
0
20 Mar 2019
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
Frederik Heber
Zofia Trstanova
Benedict Leimkuhler
40
1
0
20 Mar 2019
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
Fan Zhou
Guojing Cong
65
8
0
12 Mar 2019
SGD without Replacement: Sharper Rates for General Smooth Convex Functions
Prateek Jain
Dheeraj M. Nagaraj
Praneeth Netrapalli
90
87
0
04 Mar 2019
Time-Delay Momentum: A Regularization Perspective on the Convergence and Generalization of Stochastic Momentum for Deep Learning
Ziming Zhang
Wenju Xu
Alan Sullivan
99
1
0
02 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
73
22
0
21 Feb 2019
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
103
66
0
19 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
80
141
0
15 Feb 2019
Forward-backward-forward methods with variance reduction for stochastic variational inequalities
R. Boț
P. Mertikopoulos
Mathias Staudigl
P. Vuong
68
23
0
09 Feb 2019
Predict Globally, Correct Locally: Parallel-in-Time Optimal Control of Neural Networks
P. Parpas
Corey Muir
OOD
88
12
0
07 Feb 2019
Negative eigenvalues of the Hessian in deep neural networks
Guillaume Alain
Nicolas Le Roux
Pierre-Antoine Manzagol
76
44
0
06 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
84
3
0
04 Feb 2019
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions
Adrien B. Taylor
Francis R. Bach
79
64
0
03 Feb 2019
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
95
119
0
03 Feb 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
100
91
0
02 Feb 2019
Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning
Nicolas García Trillos
Zachary T. Kaplan
D. Sanz-Alonso
ODL
57
3
0
29 Jan 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
107
41
0
28 Jan 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
109
383
0
27 Jan 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
90
45
0
25 Jan 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
74
36
0
24 Jan 2019
Large-Batch Training for LSTM and Beyond
Yang You
Jonathan Hseu
Chris Ying
J. Demmel
Kurt Keutzer
Cho-Jui Hsieh
65
91
0
24 Jan 2019
Decoupled Greedy Learning of CNNs
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
80
117
0
23 Jan 2019
Previous
1
2
3
...
13
14
15
16
17
18
Next