Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,406 papers shown
Title
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
37
1
0
06 Aug 2024
Differentially Private Block-wise Gradient Shuffle for Deep Learning
Zilong Zhang
FedML
34
0
0
31 Jul 2024
Adaptive Mix for Semi-Supervised Medical Image Segmentation
Zhiqiang Shen
Peng Cao
Junming Su
Jinzhu Yang
Osmar R. Zaiane
51
0
0
31 Jul 2024
An Effective Dynamic Gradient Calibration Method for Continual Learning
Weichen Lin
Jiaxiang Chen
Ru Huang
Huihua Ding
CLL
44
0
0
30 Jul 2024
PIP: Prototypes-Injected Prompt for Federated Class Incremental Learning
M. A. Ma'sum
Mahardhika Pratama
Savitha Ramasamy
Lin Liu
Habibullah Habibullah
Ryszard Kowalczyk
CLL
41
0
0
30 Jul 2024
Learning Random Numbers to Realize Appendable Memory System for Artificial Intelligence to Acquire New Knowledge after Deployment
Kazunori D Yamada
21
0
0
29 Jul 2024
FIARSE: Model-Heterogeneous Federated Learning via Importance-Aware Submodel Extraction
Feijie Wu
Xingchen Wang
Yaqing Wang
Tianci Liu
Lu Su
Jing Gao
FedML
51
3
0
28 Jul 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
44
2
0
18 Jul 2024
Sharpness-diversity tradeoff: improving flat ensembles with SharpBalance
Haiquan Lu
Xiaotian Liu
Yefan Zhou
Qunli Li
Kurt Keutzer
Michael W. Mahoney
Yujun Yan
Huanrui Yang
Yaoqing Yang
45
1
0
17 Jul 2024
Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
Tong Zhang
Chris Junchi Li
38
0
0
15 Jul 2024
Stabilized Proximal-Point Methods for Federated Optimization
Xiaowen Jiang
Anton Rodomanov
Sebastian U. Stich
FedML
46
1
0
09 Jul 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
42
3
0
05 Jul 2024
Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent
Adrien Schertzer
Loucas Pillaud-Vivien
31
0
0
02 Jul 2024
Deterministic and Stochastic Frank-Wolfe Recursion on Probability Spaces
Di Yu
Shane G. Henderson
R. Pasupathy
15
0
0
29 Jun 2024
Unbiased least squares regression via averaged stochastic gradient descent
Nabil Kahalé
37
0
0
26 Jun 2024
Efficient k-means with Individual Fairness via Exponential Tilting
Shengkun Zhu
Jinshan Zeng
Yuan Sun
Sheng Wang
Xiaodong Li
Zhiyong Peng
52
0
0
24 Jun 2024
Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
Yuchen Yang
Yingdong Shi
Cheems Wang
Xiantong Zhen
Yuxuan Shi
Jun Xu
40
1
0
24 Jun 2024
Towards Timely Video Analytics Services at the Network Edge
Xishuo Li
Shan Zhang
Yuejiao Huang
Xiao Ma
Zhiyuan Wang
Hongbin Luo
33
1
0
21 Jun 2024
Information Guided Regularization for Fine-tuning Language Models
Mandar Sharma
Nikhil Muralidhar
Shengzhe Xu
Raquib Bin Yousuf
Naren Ramakrishnan
38
0
0
20 Jun 2024
Communication-Efficient Adaptive Batch Size Strategies for Distributed Local Gradient Methods
Tim Tsz-Kit Lau
Weijian Li
Chenwei Xu
Han Liu
Mladen Kolar
44
1
0
20 Jun 2024
Towards Exact Gradient-based Training on Analog In-memory Computing
Zhaoxian Wu
Tayfun Gokmen
Malte J. Rasch
Tianyi Chen
34
2
0
18 Jun 2024
Generative vs. Discriminative modeling under the lens of uncertainty quantification
Elouan Argouarc'h
François Desbouvries
Eric Barat
Eiji Kawasaki
UQCV
46
0
0
13 Jun 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
52
0
0
11 Jun 2024
A Generalized Version of Chung's Lemma and its Applications
Li Jiang
Xiao Li
Andre Milzarek
Junwen Qiu
45
1
0
09 Jun 2024
Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions
Devyani Maladkar
Ruichen Jiang
Aryan Mokhtari
43
6
0
07 Jun 2024
Efficient Data-Parallel Continual Learning with Asynchronous Distributed Rehearsal Buffers
Thomas Bouvier
Bogdan Nicolae
Hugo Chaugier
Alexandru Costan
Ian Foster
Gabriel Antoniu
44
1
0
05 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
53
0
0
03 Jun 2024
Privacy-Aware Randomized Quantization via Linear Programming
Zhongteng Cai
Xueru Zhang
Mohammad Mahdi Khalili
52
2
0
01 Jun 2024
Enhancing Efficiency of Safe Reinforcement Learning via Sample Manipulation
Shangding Gu
Laixi Shi
Yuhao Ding
Alois Knoll
C. Spanos
Adam Wierman
Ming Jin
OffRL
40
2
0
31 May 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
50
2
0
30 May 2024
A Pontryagin Perspective on Reinforcement Learning
Onno Eberhard
Claire Vernade
Michael Muehlebach
43
2
0
28 May 2024
WASH: Train your Ensemble with Communication-Efficient Weight Shuffling, then Average
Louis Fournier
Adel Nabli
Masih Aminbeidokhti
M. Pedersoli
Eugene Belilovsky
Edouard Oyallon
MoMe
FedML
49
3
0
27 May 2024
Derivatives of Stochastic Gradient Descent
F. Iutzeler
Edouard Pauwels
Samuel Vaiter
42
1
0
24 May 2024
Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks
Felix Dangel
Johannes Müller
Marius Zeinhofer
ODL
34
6
0
24 May 2024
Exact Gauss-Newton Optimization for Training Deep Neural Networks
Mikalai Korbit
Adeyemi Damilare Adeoye
Alberto Bemporad
Mario Zanon
ODL
33
0
0
23 May 2024
Thermodynamic Natural Gradient Descent
Kaelan Donatella
Samuel Duffield
Maxwell Aifer
Denis Melanson
Gavin Crooks
Patrick J. Coles
28
3
0
22 May 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
39
3
0
22 May 2024
Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach
Chung-Hsuan Hu
Zheng Chen
Erik G. Larsson
39
2
0
20 May 2024
Minimisation of Polyak-Łojasewicz Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Iman Shames
28
1
0
15 May 2024
Robust Semi-supervised Learning by Wisely Leveraging Open-set Data
Yang Yang
Nan Jiang
Yi Tian Xu
De-Chuan Zhan
36
17
0
11 May 2024
Optimal Baseline Corrections for Off-Policy Contextual Bandits
Shashank Gupta
Olivier Jeunen
Harrie Oosterhuis
Maarten de Rijke
36
7
0
09 May 2024
Accelerating Legacy Numerical Solvers by Non-intrusive Gradient-based Meta-solving
S. Arisaka
Qianxiao Li
27
0
0
05 May 2024
A Full Adagrad algorithm with O(Nd) operations
Antoine Godichon-Baggioni
Wei Lu
Bruno Portier
ODL
54
0
0
03 May 2024
The Privacy Power of Correlated Noise in Decentralized Learning
Youssef Allouah
Anastasia Koloskova
Aymane El Firdoussi
Martin Jaggi
R. Guerraoui
31
4
0
02 May 2024
On the Relevance of Byzantine Robust Optimization Against Data Poisoning
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
AAML
27
1
0
01 May 2024
IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements
M. Stol
Alessandra Mileo
34
1
0
30 Apr 2024
Advancing Supervised Learning with the Wave Loss Function: A Robust and Smooth Approach
M. Akhtar
Muhammad Tanveer
Mohd. Arshad
27
17
0
28 Apr 2024
Second-order Information Promotes Mini-Batch Robustness in Variance-Reduced Gradients
Sachin Garg
A. Berahas
Michal Dereziñski
46
1
0
23 Apr 2024
Rate Analysis of Coupled Distributed Stochastic Approximation for Misspecified Optimization
Yaqun Yang
Jinlong Lei
26
0
0
21 Apr 2024
FedMeS: Personalized Federated Continual Learning Leveraging Local Memory
Jingru Xie
Chenqi Zhu
Songze Li
FedML
CLL
32
0
0
19 Apr 2024
Previous
1
2
3
4
5
6
...
27
28
29
Next