42
4

Error Lower Bounds of Constant Step-size Stochastic Gradient Descent

Abstract

Stochastic Gradient Descent (SGD) plays a central role in modern machine learning. While there is extensive work on providing error upper bound for SGD, not much is known about SGD error lower bound. In this paper, we study the convergence of constant step-size SGD. We provide error lower bound of SGD for potentially non-convex objective functions with Lipschitz gradients. To our knowledge, this is the first analysis for SGD error lower bound without the strong convexity assumption. We use experiments to illustrate our theoretical results.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.