Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Training Deep Neural Networks via Branch-and-Bound
Yuanwei Wu
Ziming Zhang
Guanghui Wang
ODL
33
0
0
05 Apr 2021
Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic Approximation under Markovian Noise
Thinh T. Doan
26
15
0
04 Apr 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
42
13
0
01 Apr 2021
Research of Damped Newton Stochastic Gradient Descent Method for Neural Network Training
Jingcheng Zhou
Wei Wei
Zhiming Zheng
ODL
14
0
0
31 Mar 2021
Multi-Source Causal Inference Using Control Variates
Wenshuo Guo
S. Wang
Peng Ding
Yixin Wang
Michael I. Jordan
CML
55
18
0
30 Mar 2021
Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and their Interface under Uncertainty using Machine Learning
Subhayan De
B. Hai
Alireza Doostan
M. Bause
22
2
0
30 Mar 2021
Hierarchical Federated Learning with Quantization: Convergence Analysis and System Design
Lumin Liu
Jun Zhang
Shenghui Song
Khaled B. Letaief
FedML
47
80
0
26 Mar 2021
The Gradient Convergence Bound of Federated Multi-Agent Reinforcement Learning with Efficient Communication
Xing Xu
Rongpeng Li
Zhifeng Zhao
Honggang Zhang
43
12
0
24 Mar 2021
Adaptive deep density approximation for Fokker-Planck equations
Keju Tang
Xiaoliang Wan
Qifeng Liao
31
37
0
20 Mar 2021
Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Medha Atre
B. Jha
Ashwini Rao
23
11
0
16 Mar 2021
Transient growth of accelerated optimization algorithms
Hesameddin Mohammadi
Samantha Samuelson
M. Jovanović
17
8
0
14 Mar 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
36
5
0
13 Mar 2021
A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training
Adnan Haider
Chao Zhang
Florian Kreyssig
P. Woodland
11
7
0
12 Mar 2021
EventGraD: Event-Triggered Communication in Parallel Machine Learning
Soumyadip Ghosh
B. Aquino
V. Gupta
FedML
26
8
0
12 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
221
0
09 Mar 2021
On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization
N. Emmenegger
Rasmus Kyng
Ahad N. Zehmakan
13
2
0
08 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
29
109
0
08 Mar 2021
A Retrospective Approximation Approach for Smooth Stochastic Optimization
David Newton
Raghu Bollapragada
R. Pasupathy
N. Yip
35
2
0
07 Mar 2021
On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction
Weilin Cong
M. Ramezani
M. Mahdavi
32
5
0
03 Mar 2021
Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates
Sebastian U. Stich
Amirkeivan Mohtashami
Martin Jaggi
17
22
0
03 Mar 2021
Deep Recurrent Encoder: A scalable end-to-end network to model brain signals
O. Chehab
Alexandre Défossez
Jean-Christophe Loiseau
Alexandre Gramfort
J. King
AI4TS
19
9
0
03 Mar 2021
Adaptive Transmission Scheduling in Wireless Networks for Asynchronous Federated Learning
Hyun-Suk Lee
Jang-Won Lee
81
53
0
02 Mar 2021
Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability
Jeremy M. Cohen
Simran Kaur
Yuanzhi Li
J. Zico Kolter
Ameet Talwalkar
ODL
43
253
0
26 Feb 2021
Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and Power Transfer
Qunsong Zeng
Yuqing Du
Kaibin Huang
42
36
0
24 Feb 2021
Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement Learning via Frank-Wolfe Policy Optimization
Jyun-Li Lin
Wei-Ting Hung
Shangtong Yang
Ping-Chun Hsieh
Xi Liu
40
14
0
22 Feb 2021
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
Zheng Shi
Abdurakhmon Sadiev
Nicolas Loizou
Peter Richtárik
Martin Takávc
ODL
41
13
0
19 Feb 2021
Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm
S. Khodadadian
Zaiwei Chen
S. T. Maguluri
CML
OffRL
74
26
0
18 Feb 2021
Differential Privacy and Byzantine Resilience in SGD: Do They Add Up?
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
33
30
0
16 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
48
26
0
14 Feb 2021
Newton Method over Networks is Fast up to the Statistical Precision
Amir Daneshmand
G. Scutari
Pavel Dvurechensky
Alexander Gasnikov
30
22
0
12 Feb 2021
Straggler-Resilient Distributed Machine Learning with Dynamic Backup Workers
Guojun Xiong
Gang Yan
Rahul Singh
Jian Li
38
12
0
11 Feb 2021
An Adaptive Stochastic Sequential Quadratic Programming with Differentiable Exact Augmented Lagrangians
Sen Na
M. Anitescu
Mladen Kolar
27
41
0
10 Feb 2021
Attentive Gaussian processes for probabilistic time-series generation
Kuilin Chen
Chi-Guhn Lee
AI4TS
16
1
0
10 Feb 2021
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
19
76
0
09 Feb 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
28
101
0
09 Feb 2021
Large-Scale Training System for 100-Million Classification at Alibaba
Liuyihan Song
Pan Pan
Kang Zhao
Hao Yang
Yiming Chen
Yingya Zhang
Yinghui Xu
Rong Jin
40
23
0
09 Feb 2021
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning
Divyansh Jhunjhunwala
Advait Gadhikar
Gauri Joshi
Yonina C. Eldar
FedML
MQ
24
108
0
08 Feb 2021
SGD in the Large: Average-case Analysis, Asymptotics, and Stepsize Criticality
Courtney Paquette
Kiwon Lee
Fabian Pedregosa
Elliot Paquette
17
32
0
08 Feb 2021
Federated Learning on the Road: Autonomous Controller Design for Connected and Autonomous Vehicles
Tengchan Zeng
Omid Semiariy
Mingzhe Chen
Walid Saad
M. Bennis
FedML
26
85
0
05 Feb 2021
Local Critic Training for Model-Parallel Learning of Deep Neural Networks
Hojung Lee
Cho-Jui Hsieh
Jong-Seok Lee
36
15
0
03 Feb 2021
The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
Blake E. Woodworth
Brian Bullins
Ohad Shamir
Nathan Srebro
21
47
0
02 Feb 2021
A Lyapunov Theory for Finite-Sample Guarantees of Asynchronous Q-Learning and TD-Learning Variants
Zaiwei Chen
S. T. Maguluri
Sanjay Shakkottai
Karthikeyan Shanmugam
OffRL
105
54
0
02 Feb 2021
Stochastic Online Convex Optimization. Application to probabilistic time series forecasting
Olivier Wintenberger
AI4TS
32
5
0
01 Feb 2021
Parameter-free Stochastic Optimization of Variationally Coherent Functions
Francesco Orabona
Dávid Pál
32
17
0
30 Jan 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
132
168
0
29 Jan 2021
Byzantine Fault-Tolerance in Peer-to-Peer Distributed Gradient-Descent
Nirupam Gupta
Nitin H. Vaidya
23
15
0
28 Jan 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
28
251
0
27 Jan 2021
SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees
Jiaming Liu
Yu Sun
Weijie Gan
Xiaojian Xu
B. Wohlberg
Ulugbek S. Kamilov
FedML
MedIm
34
30
0
22 Jan 2021
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
33
42
0
22 Jan 2021
Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning
Dariush Bahrami
Sadegh Pouriyan Zadeh
ODL
9
5
0
22 Jan 2021
Previous
1
2
3
...
15
16
17
...
27
28
29
Next