Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,406 papers shown
Title
Beyond adaptive gradient: Fast-Controlled Minibatch Algorithm for large-scale optimization
Corrado Coppola
Lorenzo Papa
Irene Amerini
L. Palagi
ODL
79
0
0
24 Nov 2024
A Potential Game Perspective in Federated Learning
Kang Liu
Ziqi Wang
Enrique Zuazua
FedML
65
0
0
18 Nov 2024
Towards Accurate and Efficient Sub-8-Bit Integer Training
Wenjin Guo
Donglai Liu
Weiying Xie
Yunsong Li
Xuefei Ning
Zihan Meng
Shulin Zeng
Jie Lei
Zhenman Fang
Yu Wang
MQ
34
1
0
17 Nov 2024
Convergence Rate Analysis of LION
Yiming Dong
Huan Li
Zhouchen Lin
39
1
0
12 Nov 2024
Effectively Leveraging Momentum Terms in Stochastic Line Search Frameworks for Fast Optimization of Finite-Sum Problems
Matteo Lapucci
Davide Pucci
ODL
32
0
0
11 Nov 2024
Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling
Junyi Li
Heng Huang
39
1
0
07 Nov 2024
Adaptive Consensus Gradients Aggregation for Scaled Distributed Training
Yoni Choukroun
Shlomi Azoulay
P. Kisilev
39
0
0
06 Nov 2024
Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization
Tito Homem-de-Mello
Juan Valencia
Felipe Lagos
Guido Lagos
31
1
0
05 Nov 2024
Rethinking Weight Decay for Robust Fine-Tuning of Foundation Models
Junjiao Tian
Chengyue Huang
Z. Kira
44
1
0
03 Nov 2024
Normalization Layer Per-Example Gradients are Sufficient to Predict Gradient Noise Scale in Transformers
Gavia Gray
Aman Tiwari
Shane Bergsma
Joel Hestness
30
1
0
01 Nov 2024
Hierarchical mixtures of Unigram models for short text clustering: The role of Beta-Liouville priors
Massimo Bilancia
Samuele Magro
33
0
0
29 Oct 2024
Neuro-symbolic Learning Yielding Logical Constraints
Zenan Li
Yunpeng Huang
Zhaoyu Li
Yuan Yao
Jingwei Xu
Taolue Chen
Xiaoxing Ma
Jian Lu
NAI
58
5
0
28 Oct 2024
Fully Stochastic Primal-dual Gradient Algorithm for Non-convex Optimization on Random Graphs
Chung-Yiu Yau
Haoming Liu
Hoi-To Wai
24
0
0
24 Oct 2024
Pipeline Gradient-based Model Training on Analog In-memory Accelerators
Zhaoxian Wu
Quan-Wu Xiao
Tayfun Gokmen
H. Tsai
Kaoutar El Maghraoui
Tianyi Chen
21
1
0
19 Oct 2024
Implicit Regularization of Sharpness-Aware Minimization for Scale-Invariant Problems
Bingcong Li
Liang Zhang
Niao He
46
3
0
18 Oct 2024
Single-Timescale Multi-Sequence Stochastic Approximation Without Fixed Point Smoothness: Theories and Applications
Yue Huang
Zhaoxian Wu
Shiqian Ma
Qing Ling
36
1
0
17 Oct 2024
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
57
2
0
17 Oct 2024
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
40
5
0
17 Oct 2024
Stability and Sharper Risk Bounds with Convergence Rate
O
(
1
/
n
2
)
O(1/n^2)
O
(
1/
n
2
)
Bowei Zhu
Shaojie Li
Yong Liu
18
0
0
13 Oct 2024
Distribution-Aware Mean Estimation under User-level Local Differential Privacy
Corentin Pla
Hugo Richard
Maxime Vono
FedML
39
0
0
12 Oct 2024
Steering Large Language Models using Conceptors: Improving Addition-Based Activation Engineering
Joris Postmus
Steven Abreu
LLMSV
118
1
0
09 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
Aiding Global Convergence in Federated Learning via Local Perturbation and Mutual Similarity Information
Emanuel Buttaci
Giuseppe Carlo Calafiore
FedML
27
0
0
07 Oct 2024
An Attention-Based Algorithm for Gravity Adaptation Zone Calibration
Chen Yu
24
0
0
06 Oct 2024
Temporal Predictive Coding for Gradient Compression in Distributed Learning
Adrian Edin
Zheng Chen
Michel Kieffer
Mikael Johansson
32
1
0
03 Oct 2024
Introducing Flexible Monotone Multiple Choice Item Response Theory Models and Bit Scales
Joakim Wallmark
Maria Josefsson
Marie Wiberg
13
1
0
02 Oct 2024
On the SAGA algorithm with decreasing step
Luis Fredes
Bernard Bercu
Eméric Gbaguidi
29
1
0
02 Oct 2024
Asymmetry of the Relative Entropy in the Regularization of Empirical Risk Minimization
Francisco Daunas
I. Esnaola
S. Perlaza
H. Vincent Poor
38
2
0
02 Oct 2024
Unifying back-propagation and forward-forward algorithms through model predictive control
Lianhai Ren
Qianxiao Li
36
1
0
29 Sep 2024
Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning
Zhidong Gao
Zhenxiao Zhang
Yu Zhang
Tongnian Wang
Yanmin Gong
Yuanxiong Guo
35
0
0
29 Sep 2024
Hierarchical Federated Learning with Multi-Timescale Gradient Correction
Wenzhi Fang
Dong-Jun Han
Evan Chen
Jianing Zhang
Christopher G. Brinton
34
6
0
27 Sep 2024
Accelerating Multi-Block Constrained Optimization Through Learning to Optimize
Ling Liang
Cameron Austin
Haizhao Yang
29
0
0
25 Sep 2024
Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training
J. Chaudhary
Dipak Nidhi
J. Heikkonen
H. Merisaari
R. Kanth
26
0
0
25 Sep 2024
Decentralized Federated Learning with Gradient Tracking over Time-Varying Directed Networks
Duong Thuy Anh Nguyen
Su Wang
Duong Tung Nguyen
Angelia Nedich
H. Vincent Poor
37
0
0
25 Sep 2024
FLeNS: Federated Learning with Enhanced Nesterov-Newton Sketch
Sunny Gupta
Mohit Jindal
Pankhi Kashyap
Pranav Jeevan
Amit Sethi
FedML
34
0
0
23 Sep 2024
DP
2
^2
2
-FedSAM: Enhancing Differentially Private Federated Learning Through Personalized Sharpness-Aware Minimization
Zhenxiao Zhang
Yuanxiong Guo
Yanmin Gong
FedML
38
0
0
20 Sep 2024
JKO for Landau: a variational particle method for homogeneous Landau equation
Yan Huang
Li Wang
31
0
0
18 Sep 2024
S-STE: Continuous Pruning Function for Efficient 2:4 Sparse Pre-training
Yuezhou Hu
Jun-Jie Zhu
Jianfei Chen
43
0
0
13 Sep 2024
Riemannian Federated Learning via Averaging Gradient Stream
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
35
1
0
11 Sep 2024
Heterogeneity-Aware Cooperative Federated Edge Learning with Adaptive Computation and Communication Compression
Zhenxiao Zhang
Zhidong Gao
Yuanxiong Guo
Yanmin Gong
29
0
0
06 Sep 2024
Robust Clustering on High-Dimensional Data with Stochastic Quantization
Anton Kozyriev
Vladimir Norkin
MQ
19
3
0
03 Sep 2024
Generalized Continuous-Time Models for Nesterov's Accelerated Gradient Methods
Chanwoong Park
Youngchae Cho
Insoon Yang
42
1
0
02 Sep 2024
Hierarchical Learning and Computing over Space-Ground Integrated Networks
Jingyang Zhu
Yuanming Shi
Yong Zhou
Chunxiao Jiang
Linling Kuang
31
2
0
26 Aug 2024
Predicting path-dependent processes by deep learning
Xudong Zheng
Yuecai Han
25
0
0
19 Aug 2024
Point Source Identification Using Singularity Enriched Neural Networks
Tianhao Hu
Bangti Jin
Zhi Zhou
3DPC
32
0
0
17 Aug 2024
Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius
Xuehao Wang
Weisen Jiang
Shuai Fu
Yu Zhang
AAML
50
0
0
15 Aug 2024
Learning Decisions Offline from Censored Observations with ε-insensitive Operational Costs
Minxia Chen
Ke Fu
Teng Huang
Miao Bai
OffRL
18
0
0
14 Aug 2024
Online-Score-Aided Federated Learning: Taming the Resource Constraints in Wireless Networks
Md Ferdous Pervej
Minseok Choi
A. Molisch
33
0
0
12 Aug 2024
Incremental Gauss-Newton Descent for Machine Learning
Mikalai Korbit
Mario Zanon
ODL
17
0
0
10 Aug 2024
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
44
0
0
09 Aug 2024
Previous
1
2
3
4
5
...
27
28
29
Next