Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 867 papers shown
Title
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
105
189
0
24 Feb 2020
The Two Regimes of Deep Network Training
Guillaume Leclerc
Aleksander Madry
94
45
0
24 Feb 2020
Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting
N. Krämer
Martin Schiegg
Christian Daniel
Michael Tiemann
Philipp Hennig
70
21
0
21 Feb 2020
Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic gradient descent
I. Ayadi
Gabriel Turinici
ODL
35
9
0
20 Feb 2020
Adaptive Sampling Distributed Stochastic Variance Reduced Gradient for Heterogeneous Distributed Datasets
Ilqar Ramazanli
Han Nguyen
Hai Pham
Sashank J. Reddi
Barnabás Póczós
83
11
0
20 Feb 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
106
79
0
19 Feb 2020
Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis
Jung Yeon Park
K. T. Carr
Stephan Zhang
Yisong Yue
Rose Yu
109
14
0
13 Feb 2020
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
49
10
0
13 Feb 2020
RFN: A Random-Feature Based Newton Method for Empirical Risk Minimization in Reproducing Kernel Hilbert Spaces
Ting-Jui Chang
Shahin Shahrampour
67
2
0
12 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
281
59
0
09 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
109
187
0
09 Feb 2020
Low Rank Saddle Free Newton: A Scalable Method for Stochastic Nonconvex Optimization
Thomas O'Leary-Roseberry
Nick Alger
Omar Ghattas
ODL
70
9
0
07 Feb 2020
Developing a Hybrid Data-Driven, Mechanistic Virtual Flow Meter -- a Case Study
M. Hotvedt
B. Grimstad
Lars Imsland
43
22
0
07 Feb 2020
Differentially Quantized Gradient Methods
Chung-Yi Lin
V. Kostina
B. Hassibi
MQ
66
8
0
06 Feb 2020
Faster On-Device Training Using New Federated Momentum Algorithm
Zhouyuan Huo
Qian Yang
Bin Gu
Heng-Chiao Huang
FedML
195
47
0
06 Feb 2020
Finite-Sample Analysis of Stochastic Approximation Using Smooth Convex Envelopes
Zaiwei Chen
S. T. Maguluri
Sanjay Shakkottai
Karthikeyan Shanmugam
141
33
0
03 Feb 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
108
21
0
23 Jan 2020
Intermittent Pulling with Local Compensation for Communication-Efficient Federated Learning
Yining Qi
Zhihao Qu
Song Guo
Xin Gao
Ruixuan Li
Baoliu Ye
FedML
45
9
0
22 Jan 2020
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
BDL
81
33
0
22 Jan 2020
Stochastic Item Descent Method for Large Scale Equal Circle Packing Problem
Kun He
Min Zhang
Jianrong Zhou
Yan Jin
ChuMin Li
13
2
0
22 Jan 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
48
29
0
18 Jan 2020
Learning the Ising Model with Generative Neural Networks
Francesco DÁngelo
Lucas Böttcher
AI4CE
57
28
0
15 Jan 2020
Secure multiparty computations in floating-point arithmetic
Chuan Guo
Awni Y. Hannun
Brian Knott
Laurens van der Maaten
M. Tygert
Ruiyu Zhu
FedML
55
17
0
09 Jan 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Vercauteren
OOD
96
10
0
08 Jan 2020
Stochastic gradient-free descents
Xiaopeng Luo
Xin Xu
ODL
23
2
0
31 Dec 2019
Characterizing the Decision Boundary of Deep Neural Networks
Hamid Karimi
Hanyu Wang
Jiliang Tang
91
67
0
24 Dec 2019
Finite-Time Analysis and Restarting Scheme for Linear Two-Time-Scale Stochastic Approximation
Thinh T. Doan
82
36
0
23 Dec 2019
Second-order Information in First-order Optimization Methods
Yuzheng Hu
Licong Lin
Shange Tang
ODL
53
2
0
20 Dec 2019
Learning Convex Optimization Control Policies
Akshay Agrawal
Shane T. Barratt
Stephen P. Boyd
Bartolomeo Stellato
80
70
0
19 Dec 2019
Randomized Reactive Redundancy for Byzantine Fault-Tolerance in Parallelized Learning
Nirupam Gupta
Nitin H. Vaidya
FedML
79
8
0
19 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
137
169
0
19 Dec 2019
PyHessian: Neural Networks Through the Lens of the Hessian
Z. Yao
A. Gholami
Kurt Keutzer
Michael W. Mahoney
ODL
89
305
0
16 Dec 2019
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
180
220
0
04 Dec 2019
Federated Learning with Personalization Layers
Manoj Ghuhan Arivazhagan
V. Aggarwal
Aaditya Kumar Singh
Sunav Choudhary
FedML
101
853
0
02 Dec 2019
Automatic Differentiable Monte Carlo: Theory and Application
Shi-Xin Zhang
Z. Wan
H. Yao
57
17
0
20 Nov 2019
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
Shaoshuai Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
Xiaowen Chu
65
22
0
20 Nov 2019
On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
77
78
0
19 Nov 2019
Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization
Anas Barakat
Pascal Bianchi
77
12
0
18 Nov 2019
Asynchronous Online Federated Learning for Edge Devices with Non-IID Data
Yujing Chen
Yue Ning
Martin Slawski
Huzefa Rangwala
FedML
101
56
0
05 Nov 2019
A Rule for Gradient Estimator Selection, with an Application to Variational Inference
Tomas Geffner
Justin Domke
66
6
0
05 Nov 2019
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
93
275
0
31 Oct 2019
Lsh-sampling Breaks the Computation Chicken-and-egg Loop in Adaptive Stochastic Gradient Estimation
Beidi Chen
Yingchen Xu
Anshumali Shrivastava
70
16
0
30 Oct 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
87
202
0
30 Oct 2019
LeanConvNets: Low-cost Yet Effective Convolutional Neural Networks
Jonathan Ephrath
Moshe Eliasof
Lars Ruthotto
E. Haber
Eran Treister
140
17
0
29 Oct 2019
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
Angus Dempster
Franccois Petitjean
Geoffrey I. Webb
AI4TS
91
785
0
29 Oct 2019
Non-Gaussianity of Stochastic Gradient Noise
A. Panigrahi
Raghav Somani
Navin Goyal
Praneeth Netrapalli
68
53
0
21 Oct 2019
Sparsification as a Remedy for Staleness in Distributed Asynchronous SGD
Rosa Candela
Giulio Franzese
Maurizio Filippone
Pietro Michiardi
91
1
0
21 Oct 2019
A Stochastic Extra-Step Quasi-Newton Method for Nonsmooth Nonconvex Optimization
Minghan Yang
Andre Milzarek
Zaiwen Wen
Tong Zhang
ODL
96
36
0
21 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
97
53
0
21 Oct 2019
A Fast Saddle-Point Dynamical System Approach to Robust Deep Learning
Yasaman Esfandiari
Aditya Balu
K. Ebrahimi
Umesh Vaidya
N. Elia
Soumik Sarkar
OOD
59
3
0
18 Oct 2019
Previous
1
2
3
...
11
12
13
...
16
17
18
Next