ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02222
  4. Cited By
Deep Kernel Learning

Deep Kernel Learning

6 November 2015
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Kernel Learning"

50 / 504 papers shown
Title
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
36
0
0
24 Aug 2022
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Max Lamparth
Ludwig M. Böss
U. Steinwandel
K. Dolag
24
0
0
14 Aug 2022
Doubly Deformable Aggregation of Covariance Matrices for Few-shot
  Segmentation
Doubly Deformable Aggregation of Covariance Matrices for Few-shot Segmentation
Zhitong Xiong
Haopeng Li
Xiao Xiang Zhu
93
36
0
30 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware
  Priors
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCVBDL
78
3
0
17 Jul 2022
NP-Match: When Neural Processes meet Semi-Supervised Learning
NP-Match: When Neural Processes meet Semi-Supervised Learning
Jianfeng Wang
Thomas Lukasiewicz
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
A. Neophytou
BDL
140
41
0
03 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
100
0
0
27 Jun 2022
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Thomas M. McDonald
M. Ross
M. Smith
Mauricio A. Alvarez
60
1
0
17 Jun 2022
Zero-Shot AutoML with Pretrained Models
Zero-Shot AutoML with Pretrained Models
Ekrem Öztürk
Fabio Ferreira
H. Jomaa
Lars Schmidt-Thieme
Josif Grabocka
Frank Hutter
VLM
112
10
0
16 Jun 2022
Scalable First-Order Bayesian Optimization via Structured Automatic
  Differentiation
Scalable First-Order Bayesian Optimization via Structured Automatic Differentiation
Sebastian Ament
Carla P. Gomes
62
9
0
16 Jun 2022
Deep Variational Implicit Processes
Deep Variational Implicit Processes
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
63
5
0
14 Jun 2022
Federated Bayesian Neural Regression: A Scalable Global Federated
  Gaussian Process
Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process
Hao Yu
Kaiyang Guo
Mahdi Karami
Xi Chen
Guojun Zhang
Pascal Poupart
FedML
89
3
0
13 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural Processes
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
62
13
0
10 Jun 2022
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Ziyi Huang
Henry Lam
Haofeng Zhang
PERUD
59
5
0
09 Jun 2022
Neural Diffusion Processes
Neural Diffusion Processes
Vincent Dutordoir
Alan D. Saul
Zoubin Ghahramani
F. Simpson
DiffM
112
42
0
08 Jun 2022
Integrating Random Effects in Deep Neural Networks
Integrating Random Effects in Deep Neural Networks
Giora Simchoni
Saharon Rosset
BDLAI4CE
129
21
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
71
6
0
30 May 2022
Semi-Parametric Inducing Point Networks and Neural Processes
Semi-Parametric Inducing Point Networks and Neural Processes
R. Rastogi
Yair Schiff
Alon Hacohen
Zhaozhi Li
I-Hsiang Lee
Yuntian Deng
M. Sabuncu
Volodymyr Kuleshov
3DPC
82
7
0
24 May 2022
Split personalities in Bayesian Neural Networks: the case for full
  marginalisation
Split personalities in Bayesian Neural Networks: the case for full marginalisation
David Yallup
Will Handley
Michael P. Hobson
A. Lasenby
Pablo Lemos
49
1
0
23 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
60
3
0
22 May 2022
The Unreasonable Effectiveness of Deep Evidential Regression
The Unreasonable Effectiveness of Deep Evidential Regression
N. Meinert
J. Gawlikowski
Alexander Lavin
UQCVEDL
275
37
0
20 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
73
4
0
15 May 2022
A hybrid data driven-physics constrained Gaussian process regression
  framework with deep kernel for uncertainty quantification
A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification
Che-Chia Chang
T. Zeng
GP
50
6
0
13 May 2022
AK: Attentive Kernel for Information Gathering
AK: Attentive Kernel for Information Gathering
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
120
13
0
13 May 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures
  meet Bayesian Deep Learning
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
135
13
0
12 May 2022
Multi Task Learning For Zero Shot Performance Prediction of Multilingual
  Models
Multi Task Learning For Zero Shot Performance Prediction of Multilingual Models
Kabir Ahuja
Shanu Kumar
Sandipan Dandapat
Monojit Choudhury
57
25
0
12 May 2022
Efficient Learning of Inverse Dynamics Models for Adaptive Computed
  Torque Control
Efficient Learning of Inverse Dynamics Models for Adaptive Computed Torque Control
David Jorge
Gabriella Pizzuto
M. Mistry
41
3
0
10 May 2022
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
Jiajun He
Austin Tripp
José Miguel Hernández-Lobato
66
23
0
05 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
231
51
0
01 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
134
19
0
30 Apr 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
41
5
0
30 Apr 2022
Inducing Gaussian Process Networks
Inducing Gaussian Process Networks
Alessandro Tibo
Thomas D. Nielsen
BDL
21
1
0
21 Apr 2022
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable
  Selection with Theoretical Guarantees
Towards a Unified Framework for Uncertainty-aware Nonlinear Variable Selection with Theoretical Guarantees
Wenying Deng
Beau Coker
Rajarshi Mukherjee
J. Liu
B. Coull
63
2
0
15 Apr 2022
LEFM-Nets: Learnable Explicit Feature Map Deep Networks for Segmentation
  of Histopathological Images of Frozen Sections
LEFM-Nets: Learnable Explicit Feature Map Deep Networks for Segmentation of Histopathological Images of Frozen Sections
Dario Sitnik
I. Kopriva
MedIm
70
3
0
14 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDLUD
94
51
0
30 Mar 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
77
98
0
23 Mar 2022
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
78
26
0
17 Mar 2022
Learning Representation for Bayesian Optimization with Collision-free
  Regularization
Learning Representation for Bayesian Optimization with Collision-free Regularization
Fengxue Zhang
Brian D. Nord
Yuxin Chen
OODBDL
42
2
0
16 Mar 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
  Covariance, Expressivity, and Neural Tangent Kernel
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
76
0
0
14 Mar 2022
Bayesian Calibration for Activity Based Models
Bayesian Calibration for Activity Based Models
Laura Schultz
Joshua A. Auld
Vadim Sokolov
63
3
0
08 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
69
10
0
02 Mar 2022
E-LMC: Extended Linear Model of Coregionalization for Spatial Field
  Prediction
E-LMC: Extended Linear Model of Coregionalization for Spatial Field Prediction
Shihong Wang
Xueying Zhang
Yichen Meng
W. Xing
49
1
0
01 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCVBDL
149
58
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
147
48
0
22 Feb 2022
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Supervising the Multi-Fidelity Race of Hyperparameter Configurations
Martin Wistuba
Arlind Kadra
Josif Grabocka
100
15
0
20 Feb 2022
Augmenting Neural Networks with Priors on Function Values
Augmenting Neural Networks with Priors on Function Values
Hunter Nisonoff
Yixin Wang
Jennifer Listgarten
74
3
0
10 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
93
3
0
30 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
118
72
0
28 Jan 2022
AutoDistill: an End-to-End Framework to Explore and Distill
  Hardware-Efficient Language Models
AutoDistill: an End-to-End Framework to Explore and Distill Hardware-Efficient Language Models
Xiaofan Zhang
Zongwei Zhou
Deming Chen
Yu Emma Wang
81
11
0
21 Jan 2022
A Kernel-Expanded Stochastic Neural Network
A Kernel-Expanded Stochastic Neural Network
Y. Sun
F. Liang
58
7
0
14 Jan 2022
Improving Robustness and Uncertainty Modelling in Neural Ordinary
  Differential Equations
Improving Robustness and Uncertainty Modelling in Neural Ordinary Differential Equations
Srinivas Anumasa
P. K. Srijith
OODUQCVBDL
76
11
0
23 Dec 2021
Previous
123456...91011
Next