Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.7051
Cited By
Stochastic Variational Inference
29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Inference"
50 / 1,065 papers shown
Title
Stochastic Variational Inference via Upper Bound
Chunlin Ji
Haige Shen
UQCV
BDL
24
11
0
02 Dec 2019
Transflow Learning: Repurposing Flow Models Without Retraining
Andrew Gambardella
A. G. Baydin
Philip Torr
DRL
AI4CE
14
8
0
29 Nov 2019
Interactive Text Ranking with Bayesian Optimisation: A Case Study on Community QA and Summarisation
Edwin Simpson
Yang Gao
Iryna Gurevych
BDL
21
10
0
22 Nov 2019
Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset
Desmond C. Ong
Zhengxuan Wu
Zhi-Xuan Tan
Marianne C. Reddan
Isabella Kahhale
Alison Mattek
Jamil Zaki
AI4TS
17
57
0
22 Nov 2019
Language Model-Driven Unsupervised Neural Machine Translation
Wei Zhang
Y. Lin
Ruoran Ren
Xiaodong Wang
Zhenshuang Liang
Zhen Huang
12
0
0
10 Nov 2019
Exactly Sparse Gaussian Variational Inference with Application to Derivative-Free Batch Nonlinear State Estimation
T. Barfoot
James Richard Forbes
David J. Yoon
28
39
0
09 Nov 2019
Auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets
Meimei Liu
Zhengwu Zhang
David B. Dunson
21
4
0
07 Nov 2019
Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems
Robert Osazuwa Ness
Kaushal Paneri
O. Vitek
25
7
0
06 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Statistical Inference in Mean-Field Variational Bayes
Wei Han
Yun Yang
28
17
0
04 Nov 2019
Review: Ordinary Differential Equations For Deep Learning
Xinshi Chen
AI4TS
AI4CE
33
5
0
01 Nov 2019
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
14
13
0
31 Oct 2019
Inverse Graphics: Unsupervised Learning of 3D Shapes from Single Images
Talip Uçar
36
0
0
31 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Online Gaussian LDA for Unsupervised Pattern Mining from Utility Usage Data
S. Mohamad
A. Bouchachia
9
8
0
25 Oct 2019
A Recurrent Variational Autoencoder for Speech Enhancement
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
Radu Horaud
DRL
22
78
0
24 Oct 2019
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
19
29
0
23 Oct 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
39
5
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
109
3
0
15 Oct 2019
A unified view of likelihood ratio and reparameterization gradients and an optimal importance sampling scheme
Paavo Parmas
Masashi Sugiyama
19
3
0
14 Oct 2019
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
24
32
0
14 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
25
5
0
10 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
13
6
0
07 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
22
3
0
30 Sep 2019
The
f
f
f
-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
22
1
0
26 Sep 2019
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
21
3
0
14 Sep 2019
Mutual-Information Regularization in Markov Decision Processes and Actor-Critic Learning
Felix Leibfried
Jordi Grau-Moya
15
21
0
11 Sep 2019
Neural Gaussian Copula for Variational Autoencoder
P. Wang
William Yang Wang
BDL
DRL
11
13
0
09 Sep 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
19
8
0
06 Sep 2019
Meta Learning with Relational Information for Short Sequences
Yujia Xie
Haoming Jiang
Feng Liu
T. Zhao
H. Zha
25
14
0
04 Sep 2019
Latent Gaussian process with composite likelihoods and numerical quadrature
S. Ramchandran
Miika Koskinen
Harri Lähdesmäki
13
0
0
04 Sep 2019
ForkNet: Multi-branch Volumetric Semantic Completion from a Single Depth Image
Yida Wang
D. Tan
Nassir Navab
Federico Tombari
3DV
3DPC
25
56
0
03 Sep 2019
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds
John P. Lalor
Hao Wu
Hong-ye Yu
18
42
0
29 Aug 2019
A Probabilistic Representation of Deep Learning
Xinjie Lan
Kenneth Barner
UQCV
BDL
AI4CE
19
1
0
26 Aug 2019
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
MedIm
31
19
0
15 Aug 2019
Convergence Rates of Variational Inference in Sparse Deep Learning
Badr-Eddine Chérief-Abdellatif
BDL
14
38
0
09 Aug 2019
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
16
12
0
09 Aug 2019
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
11
23
0
08 Aug 2019
Population Predictive Checks
Rajesh Ranganath
David M. Blei
Rajesh Ranganath
9
12
0
02 Aug 2019
Updating Variational Bayes: Fast sequential posterior inference
Nathaniel Tomasetti
Catherine S. Forbes
Anastasios Panagiotelis
20
9
0
01 Aug 2019
A Theoretical Case Study of Structured Variational Inference for Community Detection
Mingzhang Yin
Y. X. R. Wang
Purnamrita Sarkar
16
8
0
29 Jul 2019
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
24
23
0
20 Jul 2019
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
21
5
0
19 Jul 2019
Amortized Monte Carlo Integration
Adam Goliñski
Frank Wood
Tom Rainforth
36
4
0
18 Jul 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
143
0
17 Jul 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
25
4
0
16 Jul 2019
The Dynamic Embedded Topic Model
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
BDL
23
87
0
12 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
37
18
0
10 Jul 2019
Deep Active Inference as Variational Policy Gradients
Beren Millidge
BDL
32
103
0
08 Jul 2019
Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data
Xihaier Luo
A. Kareem
BDL
UQCV
11
28
0
08 Jul 2019
Previous
1
2
3
...
11
12
13
...
20
21
22
Next