ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Stochastic Variational Inference via Upper Bound
Stochastic Variational Inference via Upper Bound
Chunlin Ji
Haige Shen
UQCV
BDL
24
11
0
02 Dec 2019
Transflow Learning: Repurposing Flow Models Without Retraining
Transflow Learning: Repurposing Flow Models Without Retraining
Andrew Gambardella
A. G. Baydin
Philip Torr
DRL
AI4CE
14
8
0
29 Nov 2019
Interactive Text Ranking with Bayesian Optimisation: A Case Study on
  Community QA and Summarisation
Interactive Text Ranking with Bayesian Optimisation: A Case Study on Community QA and Summarisation
Edwin Simpson
Yang Gao
Iryna Gurevych
BDL
21
10
0
22 Nov 2019
Modeling emotion in complex stories: the Stanford Emotional Narratives
  Dataset
Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset
Desmond C. Ong
Zhengxuan Wu
Zhi-Xuan Tan
Marianne C. Reddan
Isabella Kahhale
Alison Mattek
Jamil Zaki
AI4TS
17
57
0
22 Nov 2019
Language Model-Driven Unsupervised Neural Machine Translation
Language Model-Driven Unsupervised Neural Machine Translation
Wei Zhang
Y. Lin
Ruoran Ren
Xiaodong Wang
Zhenshuang Liang
Zhen Huang
12
0
0
10 Nov 2019
Exactly Sparse Gaussian Variational Inference with Application to
  Derivative-Free Batch Nonlinear State Estimation
Exactly Sparse Gaussian Variational Inference with Application to Derivative-Free Batch Nonlinear State Estimation
T. Barfoot
James Richard Forbes
David J. Yoon
28
39
0
09 Nov 2019
Auto-encoding brain networks with applications to analyzing large-scale
  brain imaging datasets
Auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets
Meimei Liu
Zhengwu Zhang
David B. Dunson
21
4
0
07 Nov 2019
Integrating Markov processes with structural causal modeling enables
  counterfactual inference in complex systems
Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems
Robert Osazuwa Ness
Kaushal Paneri
O. Vitek
25
7
0
06 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Statistical Inference in Mean-Field Variational Bayes
Statistical Inference in Mean-Field Variational Bayes
Wei Han
Yun Yang
28
17
0
04 Nov 2019
Review: Ordinary Differential Equations For Deep Learning
Review: Ordinary Differential Equations For Deep Learning
Xinshi Chen
AI4TS
AI4CE
33
5
0
01 Nov 2019
Continual Multi-task Gaussian Processes
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
14
13
0
31 Oct 2019
Inverse Graphics: Unsupervised Learning of 3D Shapes from Single Images
Inverse Graphics: Unsupervised Learning of 3D Shapes from Single Images
Talip Uçar
36
0
0
31 Oct 2019
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic
  Programs with Stochastic Support
Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support
Yuanshuo Zhou
Hongseok Yang
Yee Whye Teh
Tom Rainforth
TPM
29
19
0
29 Oct 2019
Online Gaussian LDA for Unsupervised Pattern Mining from Utility Usage
  Data
Online Gaussian LDA for Unsupervised Pattern Mining from Utility Usage Data
S. Mohamad
A. Bouchachia
9
8
0
25 Oct 2019
A Recurrent Variational Autoencoder for Speech Enhancement
A Recurrent Variational Autoencoder for Speech Enhancement
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
Radu Horaud
DRL
22
78
0
24 Oct 2019
Optimistic Distributionally Robust Optimization for Nonparametric
  Likelihood Approximation
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
19
29
0
23 Oct 2019
Parametric Gaussian Process Regressors
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
39
5
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
109
3
0
15 Oct 2019
A unified view of likelihood ratio and reparameterization gradients and
  an optimal importance sampling scheme
A unified view of likelihood ratio and reparameterization gradients and an optimal importance sampling scheme
Paavo Parmas
Masashi Sugiyama
19
3
0
14 Oct 2019
Introducing an Explicit Symplectic Integration Scheme for Riemannian
  Manifold Hamiltonian Monte Carlo
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
24
32
0
14 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
25
5
0
10 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
13
6
0
07 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation
  Theory
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
22
3
0
30 Sep 2019
The fff-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
22
1
0
26 Sep 2019
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
21
3
0
14 Sep 2019
Mutual-Information Regularization in Markov Decision Processes and
  Actor-Critic Learning
Mutual-Information Regularization in Markov Decision Processes and Actor-Critic Learning
Felix Leibfried
Jordi Grau-Moya
15
21
0
11 Sep 2019
Neural Gaussian Copula for Variational Autoencoder
Neural Gaussian Copula for Variational Autoencoder
P. Wang
William Yang Wang
BDL
DRL
11
13
0
09 Sep 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field
  Approximation
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
19
8
0
06 Sep 2019
Meta Learning with Relational Information for Short Sequences
Meta Learning with Relational Information for Short Sequences
Yujia Xie
Haoming Jiang
Feng Liu
T. Zhao
H. Zha
25
14
0
04 Sep 2019
Latent Gaussian process with composite likelihoods and numerical
  quadrature
Latent Gaussian process with composite likelihoods and numerical quadrature
S. Ramchandran
Miika Koskinen
Harri Lähdesmäki
13
0
0
04 Sep 2019
ForkNet: Multi-branch Volumetric Semantic Completion from a Single Depth
  Image
ForkNet: Multi-branch Volumetric Semantic Completion from a Single Depth Image
Yida Wang
D. Tan
Nassir Navab
Federico Tombari
3DV
3DPC
25
56
0
03 Sep 2019
Learning Latent Parameters without Human Response Patterns: Item
  Response Theory with Artificial Crowds
Learning Latent Parameters without Human Response Patterns: Item Response Theory with Artificial Crowds
John P. Lalor
Hao Wu
Hong-ye Yu
18
42
0
29 Aug 2019
A Probabilistic Representation of Deep Learning
A Probabilistic Representation of Deep Learning
Xinjie Lan
Kenneth Barner
UQCV
BDL
AI4CE
19
1
0
26 Aug 2019
Bayesian Generative Models for Knowledge Transfer in MRI Semantic
  Segmentation Problems
Bayesian Generative Models for Knowledge Transfer in MRI Semantic Segmentation Problems
Anna Kuzina
Evgenii Egorov
Evgeny Burnaev
MedIm
31
19
0
15 Aug 2019
Convergence Rates of Variational Inference in Sparse Deep Learning
Convergence Rates of Variational Inference in Sparse Deep Learning
Badr-Eddine Chérief-Abdellatif
BDL
14
38
0
09 Aug 2019
Probabilistic Models with Deep Neural Networks
Probabilistic Models with Deep Neural Networks
A. Masegosa
Rafael Cabañas
H. Langseth
Thomas D. Nielsen
Antonio Salmerón
BDL
16
12
0
09 Aug 2019
Variational Bayes on Manifolds
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
11
23
0
08 Aug 2019
Population Predictive Checks
Population Predictive Checks
Rajesh Ranganath
David M. Blei
Rajesh Ranganath
9
12
0
02 Aug 2019
Updating Variational Bayes: Fast sequential posterior inference
Updating Variational Bayes: Fast sequential posterior inference
Nathaniel Tomasetti
Catherine S. Forbes
Anastasios Panagiotelis
20
9
0
01 Aug 2019
A Theoretical Case Study of Structured Variational Inference for
  Community Detection
A Theoretical Case Study of Structured Variational Inference for Community Detection
Mingzhang Yin
Y. X. R. Wang
Purnamrita Sarkar
16
8
0
29 Jul 2019
Towards Verified Stochastic Variational Inference for Probabilistic
  Programs
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee
Hangyeol Yu
Xavier Rival
Hongseok Yang
24
23
0
20 Jul 2019
Kernel Mode Decomposition and programmable/interpretable regression
  networks
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
21
5
0
19 Jul 2019
Amortized Monte Carlo Integration
Amortized Monte Carlo Integration
Adam Goliñski
Frank Wood
Tom Rainforth
36
4
0
18 Jul 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
38
143
0
17 Jul 2019
Structured Variational Inference in Unstable Gaussian Process State
  Space Models
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
25
4
0
16 Jul 2019
The Dynamic Embedded Topic Model
The Dynamic Embedded Topic Model
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
BDL
23
87
0
12 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
37
18
0
10 Jul 2019
Deep Active Inference as Variational Policy Gradients
Deep Active Inference as Variational Policy Gradients
Beren Millidge
BDL
32
103
0
08 Jul 2019
Bayesian deep learning with hierarchical prior: Predictions from limited
  and noisy data
Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data
Xihaier Luo
A. Kareem
BDL
UQCV
11
28
0
08 Jul 2019
Previous
123...111213...202122
Next