ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Topic Modeling in Embedding Spaces
Topic Modeling in Embedding Spaces
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
BDL
36
621
0
08 Jul 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
28
55
0
08 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
26
34
0
01 Jul 2019
Hierarchical Optimal Transport for Document Representation
Hierarchical Optimal Transport for Document Representation
Mikhail Yurochkin
Sebastian Claici
Edward Chien
F. Mirzazadeh
Justin Solomon
OT
21
90
0
26 Jun 2019
An Unsupervised Bayesian Neural Network for Truth Discovery in Social
  Networks
An Unsupervised Bayesian Neural Network for Truth Discovery in Social Networks
Jielong Yang
Wee Peng Tay
BDL
30
8
0
25 Jun 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
9
34
0
22 Jun 2019
Probabilistic Logic Neural Networks for Reasoning
Probabilistic Logic Neural Networks for Reasoning
Meng Qu
Jian Tang
30
160
0
20 Jun 2019
Provable Gradient Variance Guarantees for Black-Box Variational
  Inference
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
DRL
9
21
0
19 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
22
549
0
17 Jun 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
27
70
0
13 Jun 2019
Topic Modeling via Full Dependence Mixtures
Topic Modeling via Full Dependence Mixtures
D. Fisher
Mark Kozdoba
Shie Mannor
8
1
0
13 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical
  Bayes
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
20
46
0
12 Jun 2019
Incremental Learning from Scratch for Task-Oriented Dialogue Systems
Incremental Learning from Scratch for Task-Oriented Dialogue Systems
Weikang Wang
Jiajun Zhang
Q. Li
M. Hwang
Chengqing Zong
Zhifei Li
CLL
28
21
0
12 Jun 2019
Learning Deep Generative Models with Annealed Importance Sampling
Learning Deep Generative Models with Annealed Importance Sampling
Xinqiang Ding
David J. Freedman
VLM
BDL
GAN
28
10
0
12 Jun 2019
Bayesian Automatic Relevance Determination for Utility Function
  Specification in Discrete Choice Models
Bayesian Automatic Relevance Determination for Utility Function Specification in Discrete Choice Models
Filipe Rodrigues
Nicola Ortelli
M. Bierlaire
Francisco Câmara Pereira
17
17
0
10 Jun 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Sparse Variational Inference: Bayesian Coresets from Scratch
Trevor Campbell
Boyan Beronov
18
38
0
07 Jun 2019
Efficient non-conjugate Gaussian process factor models for spike count
  data using polynomial approximations
Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations
Stephen L. Keeley
D. Zoltowski
Yiyi Yu
Jacob L. Yates
S. L. Smith
Jonathan W. Pillow
23
20
0
07 Jun 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of
  Exponential-family Approximations
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
11
69
0
07 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,295
0
06 Jun 2019
Can Graph Neural Networks Help Logic Reasoning?
Can Graph Neural Networks Help Logic Reasoning?
Yuyu Zhang
Xinshi Chen
Yu’an Yang
Arun Ramamurthy
Bo Li
Yuan Qi
Le Song
NAI
AI4CE
26
13
0
05 Jun 2019
Reliable training and estimation of variance networks
Reliable training and estimation of variance networks
N. Detlefsen
Martin Jørgensen
Søren Hauberg
UQCV
19
86
0
04 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
13
30
0
04 Jun 2019
Coresets for Estimating Means and Mean Square Error with Limited Greedy
  Samples
Coresets for Estimating Means and Mean Square Error with Limited Greedy Samples
Saeed Vahidian
Baharan Mirzasoleiman
A. Cloninger
26
0
0
03 Jun 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
17
23
0
28 May 2019
Recursive Estimation for Sparse Gaussian Process Regression
Recursive Estimation for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
33
32
0
28 May 2019
Dirichlet Simplex Nest and Geometric Inference
Dirichlet Simplex Nest and Geometric Inference
Mikhail Yurochkin
Aritra Guha
Yuekai Sun
X. Nguyen
26
4
0
27 May 2019
A view of Estimation of Distribution Algorithms through the lens of
  Expectation-Maximization
A view of Estimation of Distribution Algorithms through the lens of Expectation-Maximization
David H. Brookes
A. Busia
Clara Fannjiang
Kevin Patrick Murphy
Jennifer Listgarten
27
22
0
24 May 2019
Sequential Gaussian Processes for Online Learning of Nonstationary
  Functions
Sequential Gaussian Processes for Online Learning of Nonstationary Functions
M. Zhang
Bianca Dumitrascu
Sinead Williamson
Barbara E. Engelhardt
28
8
0
24 May 2019
Multi-Class Gaussian Process Classification Made Conjugate: Efficient
  Inference via Data Augmentation
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
Théo Galy-Fajou
F. Wenzel
Christian Donner
Manfred Opper
33
29
0
23 May 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
34
37
0
23 May 2019
MaxEntropy Pursuit Variational Inference
MaxEntropy Pursuit Variational Inference
Evgenii Egorov
Kirill Neklyudov
R. Kostoev
Evgeny Burnaev
BDL
11
3
0
20 May 2019
Variational Hetero-Encoder Randomized GANs for Joint Image-Text Modeling
Variational Hetero-Encoder Randomized GANs for Joint Image-Text Modeling
Hao Zhang
Bo Chen
Long Tian
Zhengjue Wang
Mingyuan Zhou
DRL
32
6
0
18 May 2019
Stochastic Blockmodels meet Graph Neural Networks
Stochastic Blockmodels meet Graph Neural Networks
Nikhil Mehta
Lawrence Carin
Piyush Rai
BDL
35
80
0
14 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
19
60
0
10 May 2019
Random Function Priors for Correlation Modeling
Random Function Priors for Correlation Modeling
Aonan Zhang
John Paisley
16
2
0
09 May 2019
Monte Carlo Co-Ordinate Ascent Variational Inference
Monte Carlo Co-Ordinate Ascent Variational Inference
Lifeng Ye
A. Beskos
Maria de Iorio
Jie Hao
DRL
BDL
11
1
0
09 May 2019
Variational Autoencoders for Sparse and Overdispersed Discrete Data
Variational Autoencoders for Sparse and Overdispersed Discrete Data
He Zhao
Piyush Rai
Lan Du
Wray Buntine
Mingyuan Zhou
DRL
13
1
0
02 May 2019
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Andrei Atanov
Alexandra Volokhova
Arsenii Ashukha
Ivan Sosnovik
Dmitry Vetrov
BDL
29
41
0
01 May 2019
Latent Variable Session-Based Recommendation
Latent Variable Session-Based Recommendation
D. Rohde
Stephen Bonner
BDL
22
3
0
24 Apr 2019
Facilitating Bayesian Continual Learning by Natural Gradients and Stein
  Gradients
Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients
Yu Chen
Tom Diethe
Neil D. Lawrence
CLL
BDL
14
13
0
24 Apr 2019
Latent Variable Algorithms for Multimodal Learning and Sensor Fusion
Latent Variable Algorithms for Multimodal Learning and Sensor Fusion
Lijiang Guo
DRL
24
1
0
23 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
40
128
0
17 Apr 2019
Copula-like Variational Inference
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
12
5
0
15 Apr 2019
Variational Bayes for high-dimensional linear regression with sparse
  priors
Variational Bayes for high-dimensional linear regression with sparse priors
Kolyan Ray
Botond Szabó
33
99
0
15 Apr 2019
A Generalization Bound for Online Variational Inference
A Generalization Bound for Online Variational Inference
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
Mohammad Emtiyaz Khan
BDL
23
25
0
08 Apr 2019
Bayesian Non-Parametric Multi-Source Modelling Based Determined Blind
  Source Separation
Bayesian Non-Parametric Multi-Source Modelling Based Determined Blind Source Separation
Chaitanya Narisetty
Tatsuya Komatsu
Reishi Kondo
14
3
0
08 Apr 2019
Bayesian Estimation of Mixed Multinomial Logit Models: Advances and
  Simulation-Based Evaluations
Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations
P. Bansal
Rico Krueger
M. Bierlaire
Ricardo A. Daziano
T. Rashidi
12
31
0
07 Apr 2019
Combining Sentiment Lexica with a Multi-View Variational Autoencoder
Combining Sentiment Lexica with a Multi-View Variational Autoencoder
Alexander Miserlis Hoyle
Lawrence Wolf-Sonkin
Hanna M. Wallach
Ryan Cotterell
Isabelle Augenstein
21
9
0
05 Apr 2019
Minimum Volume Topic Modeling
Minimum Volume Topic Modeling
B. Jang
Alfred Hero
24
4
0
03 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Previous
123...121314...202122
Next