Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.7051
Cited By
Stochastic Variational Inference
29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Inference"
50 / 1,065 papers shown
Title
Training Bayesian Neural Networks with Sparse Subspace Variational Inference
Junbo Li
Zichen Miao
Qiang Qiu
Ruqi Zhang
BDL
UQCV
20
8
0
16 Feb 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
66
17
0
07 Feb 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
37
3
0
05 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Enhancing Dynamical System Modeling through Interpretable Machine Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition
Christian L. Jacobsen
Jiayuan Dong
Mehdi Khalloufi
Xun Huan
Karthik Duraisamy
Maryam Akram
Wanjiao Liu
23
1
0
16 Jan 2024
Demystifying Variational Diffusion Models
Fabio De Sousa Ribeiro
Ben Glocker
DiffM
25
0
0
11 Jan 2024
VI-PANN: Harnessing Transfer Learning and Uncertainty-Aware Variational Inference for Improved Generalization in Audio Pattern Recognition
John Fischer
Marko Orescanin
Eric Eckstrand
UQCV
BDL
26
4
0
10 Jan 2024
Deep autoregressive modeling for land use land cover
C. Krapu
Mark Borsuk
Ryan Calder
BDL
23
0
0
02 Jan 2024
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
85
39
0
28 Dec 2023
Amortized Reparametrization: Efficient and Scalable Variational Inference for Latent SDEs
Kevin Course
P. Nair
29
3
0
16 Dec 2023
Joint State Estimation and Noise Identification Based on Variational Optimization
Hua Lan
Shijie Zhao
Jinjie Hu
Zengfu Wang
Jing-Zhi Fu
12
1
0
15 Dec 2023
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
29
4
0
10 Dec 2023
Mixture of Dynamical Variational Autoencoders for Multi-Source Trajectory Modeling and Separation
Xiaoyu Lin
Laurent Girin
Xavier Alameda-Pineda
8
2
0
07 Dec 2023
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
26
0
0
06 Dec 2023
Concept Drift Adaptation in Text Stream Mining Settings: A Comprehensive Review
C. M. Garcia
Ramon Simoes Abilio
A. L. Koerich
A. Britto
J. P. Barddal
AI4TS
44
2
0
05 Dec 2023
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian Deep Learning
Thomas Baldwin-McDonald
Mauricio A. Álvarez
39
1
0
24 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
20
2
0
21 Nov 2023
Informative Priors Improve the Reliability of Multimodal Clinical Data Classification
L. J. L. Lopez
Tim G. J. Rudner
Karan Singhal
45
3
0
17 Nov 2023
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
30
1
0
15 Nov 2023
Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data
Shikai Fang
Xin Yu
Zheng Wang
Shibo Li
R. Kirby
Shandian Zhe
27
1
0
08 Nov 2023
Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder
Michael D. Bereket
Theofanis Karaletsos
DRL
30
18
0
05 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
22
2
0
01 Nov 2023
Diffusion models for probabilistic programming
Simon Dirmeier
Fernando Pérez-Cruz
58
0
0
01 Nov 2023
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
28
1
0
01 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
On Feynman--Kac training of partial Bayesian neural networks
Zheng Zhao
Sebastian Mair
Thomas B. Schon
Jens Sjölund
35
0
0
30 Oct 2023
Optimising Distributions with Natural Gradient Surrogates
Jonathan So
Richard Turner
24
1
0
18 Oct 2023
Advancing Audio Emotion and Intent Recognition with Large Pre-Trained Models and Bayesian Inference
Dejan Porjazovski
Yaroslav Getman
Tamás Grósz
M. Kurimo
30
3
0
16 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
ZeroSwap: Data-driven Optimal Market Making in DeFi
Viraj Nadkarni
Jiachen Hu
Ranvir Rana
Chi Jin
Sanjeev Kulkarni
Pramod Viswanath
17
3
0
13 Oct 2023
On variational inference and maximum likelihood estimation with the λ-exponential family
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
30
2
0
06 Oct 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
32
4
0
06 Oct 2023
Coarse-to-Fine Concept Bottleneck Models
Konstantinos P. Panousis
Dino Ienco
Diego Marcos
28
5
0
03 Oct 2023
Improvements on Scalable Stochastic Bayesian Inference Methods for Multivariate Hawkes Process
Alex Ziyu Jiang
Abel Rodríguez
27
1
0
26 Sep 2023
Causal Reasoning: Charting a Revolutionary Course for Next-Generation AI-Native Wireless Networks
Christo Kurisummoottil Thomas
Christina Chaccour
Walid Saad
Merouane Debbah
Choong Seon Hong
26
20
0
23 Sep 2023
Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications
John S. Schreck
D. Gagne
Charlie Becker
William E. Chapman
K. Elmore
...
Vanessa M. Pryzbylo
Jacob T. Radford
B. Saavedra
Justin Willson
Christopher D. Wirz
BDL
UD
OOD
UQCV
EDL
15
8
0
22 Sep 2023
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
16
1
0
22 Sep 2023
Bayesian sparsification for deep neural networks with Bayesian model reduction
Dimitrije Marković
K. Friston
S. Kiebel
BDL
UQCV
38
1
0
21 Sep 2023
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
Sutanu Gayen
Kuldeep S. Meel
Dimitrios Myrisiotis
A. Pavan
N. V. Vinodchandran
18
4
0
17 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
23
3
0
08 Sep 2023
Distributed Variational Inference for Online Supervised Learning
P. Paritosh
Nikolay Atanasov
Sonia Martinez
37
1
0
05 Sep 2023
Heterogeneous Multi-Task Gaussian Cox Processes
Feng Zhou
Quyu Kong
Zhijie Deng
Fengxiang He
Peng Cui
Jun Zhu
30
2
0
29 Aug 2023
Stochastic Variational Inference for GARCH Models
Hanwen Xuan
Luca Maestrini
F. Chen
Clara Grazian
17
2
0
29 Aug 2023
NAS-X: Neural Adaptive Smoothing via Twisting
Dieterich Lawson
Michael Y. Li
Scott W. Linderman
20
1
0
28 Aug 2023
Sparse Linear Concept Discovery Models
Konstantinos P. Panousis
Dino Ienco
Diego Marcos
34
15
0
21 Aug 2023
Robust Bayesian Tensor Factorization with Zero-Inflated Poisson Model and Consensus Aggregation
Daniel Chafamo
Vignesh Shanmugam
Neriman Tokcan
14
1
0
15 Aug 2023
Natural Evolution Strategies as a Black Box Estimator for Stochastic Variational Inference
Ahmad Ayaz Amin
BDL
DRL
21
0
0
15 Aug 2023
Towards the Development of an Uncertainty Quantification Protocol for the Natural Gas Industry
Babajide Kolade
14
0
0
05 Aug 2023
Amortized Variational Inference: When and Why?
C. Margossian
David M. Blei
11
10
0
20 Jul 2023
Bayesian inference for data-efficient, explainable, and safe robotic motion planning: A review
Chengmin Zhou
Chao Wang
Haseeb Hassan
H. Shah
Bingding Huang
Pasi Fränti
3DV
38
3
0
16 Jul 2023
Previous
1
2
3
4
5
6
...
20
21
22
Next