Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.7051
Cited By
Stochastic Variational Inference
29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Inference"
50 / 1,065 papers shown
Title
Additive stacking for disaggregate electricity demand forecasting
Christian Capezza
B. Palumbo
Y. Goude
S. Wood
Matteo Fasiolo
AI4TS
21
6
0
20 May 2020
Patient Similarity Analysis with Longitudinal Health Data
Ahmed Allam
Matthias Dittberner
A. Sintsova
D. Brodbeck
Michael Krauthammer
23
14
0
14 May 2020
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian
Ahmed Alaa
M. Schaar
27
33
0
13 May 2020
Text-Based Ideal Points
Keyon Vafa
S. Naidu
David M. Blei
11
35
0
08 May 2020
Informative Scene Decomposition for Crowd Analysis, Comparison and Simulation Guidance
Feixiang He
Yuanhang Xiang
Xi Zhao
He Wang
3DV
35
22
0
29 Apr 2020
Conditional Variational Image Deraining
Yingjun Du
Jun Xu
Xiantong Zhen
Ming-Ming Cheng
Ling Shao
25
77
0
23 Apr 2020
Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit
Tomoki Koriyama
Hiroshi Saruwatari
BDL
26
5
0
22 Apr 2020
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Filipe Rodrigues
BDL
21
3
0
11 Apr 2020
B-SCST: Bayesian Self-Critical Sequence Training for Image Captioning
Shashank Bujimalla
Mahesh Subedar
Omesh Tickoo
BDL
UQCV
25
10
0
06 Apr 2020
Variational Inference with Vine Copulas: An efficient Approach for Bayesian Computer Model Calibration
Vojtech Kejzlar
T. Maiti
18
6
0
28 Mar 2020
Bag of biterms modeling for short texts
A. Tuan
Bach Tran
Thien Huu Nguyen
Linh Ngo Van
Khoat Than
BDL
14
10
0
26 Mar 2020
Bayesian Sparsification Methods for Deep Complex-valued Networks
Ivan Nazarov
Evgeny Burnaev
BDL
22
0
0
25 Mar 2020
Deep Markov Spatio-Temporal Factorization
Amirreza Farnoosh
B. Rezaei
Eli Sennesh
Zulqarnain Khan
Jennifer Dy
Ajay Satpute
J. B. Hutchinson
Jan-Willem van de Meent
Sarah Ostadabbas
AI4TS
20
4
0
22 Mar 2020
Dynamic transformation of prior knowledge into Bayesian models for data streams
Tran Xuan Bach
N. Anh
Ngo Van Linh
Khoat Than
11
8
0
13 Mar 2020
A Graph Convolutional Topic Model for Short and Noisy Text Streams
Ngo Van Linh
Tran Xuan Bach
Khoat Than
14
1
0
13 Mar 2020
Continuous Domain Adaptation with Variational Domain-Agnostic Feature Replay
Qicheng Lao
Xiang Jiang
Mohammad Havaei
Yoshua Bengio
VLM
23
33
0
09 Mar 2020
Scalable Approximate Inference and Some Applications
Jun Han
BDL
24
1
0
07 Mar 2020
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDL
UQCV
227
22
0
06 Mar 2020
Fast Adaptively Weighted Matrix Factorization for Recommendation with Implicit Feedback
Jiawei Chen
Can Wang
Sheng Zhou
Qihao Shi
Jingbang Chen
Yan Feng
Chun-Yen Chen
OffRL
51
56
0
04 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
42
94
0
02 Mar 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
29
4
0
26 Feb 2020
Lipschitz standardization for multivariate learning
Adrián Javaloy
Isabel Valera
18
0
0
26 Feb 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDL
MQ
35
40
0
25 Feb 2020
Informative Bayesian Neural Network Priors for Weak Signals
Tianyu Cui
A. Havulinna
Pekka Marttinen
Samuel Kaski
35
9
0
24 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
21
4
0
19 Feb 2020
π
π
π
VAE: a stochastic process prior for Bayesian deep learning with MCMC
Swapnil Mishra
Seth Flaxman
Tresnia Berah
Harrison Zhu
Mikko S. Pakkanen
Samir Bhatt
BDL
29
3
0
17 Feb 2020
Latent Variable Modelling with Hyperbolic Normalizing Flows
A. Bose
Ariella Smofsky
Renjie Liao
Prakash Panangaden
William L. Hamilton
DRL
19
67
0
15 Feb 2020
The Phantom Steering Effect in Q&A Websites
Nicholas Hoernle
Gregory Kehne
Ariel D. Procaccia
Y. Gal
LLMSV
6
2
0
14 Feb 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
19
34
0
12 Feb 2020
Large Scale Tensor Regression using Kernels and Variational Inference
Robert Hu
Geoff K. Nicholls
Dino Sejdinovic
17
4
0
11 Feb 2020
Domain Adaptation as a Problem of Inference on Graphical Models
Kun Zhang
Biwei Huang
P. Stojanov
Erdun Gao
Qingsong Liu
Clark Glymour
OOD
48
64
0
09 Feb 2020
Automatic structured variational inference
L. Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
32
29
0
03 Feb 2020
Towards a Kernel based Uncertainty Decomposition Framework for Data and Models
Rishabh Singh
José C. Príncipe
UQCV
UD
39
8
0
30 Jan 2020
Parameter Space Factorization for Zero-Shot Learning across Tasks and Languages
Edoardo Ponti
Ivan Vulić
Ryan Cotterell
Marinela Parović
Roi Reichart
Anna Korhonen
BDL
31
29
0
30 Jan 2020
Efficient Probabilistic Logic Reasoning with Graph Neural Networks
Yuyu Zhang
Xinshi Chen
Yu’an Yang
Arun Ramamurthy
Bo Li
Yuan Qi
Le Song
AI4CE
17
111
0
29 Jan 2020
Bayesian Reasoning with Trained Neural Networks
Jakob Knollmüller
T. Ensslin
BDL
UQCV
6
2
0
29 Jan 2020
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
BDL
10
33
0
22 Jan 2020
Efficient Debiased Evidence Estimation by Multilevel Monte Carlo Sampling
Kei Ishikawa
T. Goda
6
2
0
14 Jan 2020
CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Jones Yirui Liu
Xinghao Qiao
Jessica Lam
TPM
19
3
0
13 Jan 2020
Scalable Hybrid HMM with Gaussian Process Emission for Sequential Time-series Data Clustering
Yohan Jung
Jinkyoo Park
6
1
0
07 Jan 2020
Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining dynamical systems
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
24
35
0
30 Dec 2019
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
25
350
0
24 Dec 2019
Sparse Polynomial Chaos expansions using Variational Relevance Vector Machines
Panagiotis Tsilifis
I. Papaioannou
D. Štraub
F. Nobile
23
18
0
23 Dec 2019
Recurrent Hierarchical Topic-Guided RNN for Language Generation
D. Guo
Bo Chen
Ruiying Lu
Mingyuan Zhou
BDL
LRM
39
8
0
21 Dec 2019
Pseudo-Encoded Stochastic Variational Inference
Amir Zadeh
Smon Hessner
Y. Lim
Louis-Philippe Morency
BDL
16
0
0
19 Dec 2019
No Representation without Transformation
Giorgio Giannone
Saeed Saremi
Jonathan Masci
Christian Osendorfer
BDL
DRL
22
2
0
09 Dec 2019
Bayesian stochastic multi-scale analysis via energy considerations
M. Sarfaraz
B. Rosic
H. Matthies
A. Ibrahimbegovic
6
6
0
06 Dec 2019
Ordinal Bayesian Optimisation
Victor Picheny
Sattar Vakili
A. Artemev
12
8
0
05 Dec 2019
A Path Towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers
Walter Winci
L. Buffoni
Hossein Sadeghi
Amir Khoshaman
Evgeny Andriyash
Mohammad H. Amin
BDL
DRL
13
59
0
04 Dec 2019
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
19
24
0
04 Dec 2019
Previous
1
2
3
...
10
11
12
...
20
21
22
Next