ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
14
335
0
07 Nov 2015
Fast Collaborative Filtering from Implicit Feedback with Provable
  Guarantees
Fast Collaborative Filtering from Implicit Feedback with Provable Guarantees
Sayantani Dasgupta
9
0
0
03 Nov 2015
Faster Stochastic Variational Inference using Proximal-Gradient Methods
  with General Divergence Functions
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Mohammad Emtiyaz Khan
Reza Babanezhad
Wu Lin
Mark W. Schmidt
Masashi Sugiyama
28
49
0
31 Oct 2015
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
Trevor Campbell
Julian Straub
John W. Fisher III
Jonathan P. How
15
41
0
30 Oct 2015
WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet
  Allocation
WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation
Jianfei Chen
Kaiwei Li
Jun Zhu
Wenguang Chen
24
69
0
29 Oct 2015
A 'Gibbs-Newton' Technique for Enhanced Inference of Multivariate Polya
  Parameters and Topic Models
A 'Gibbs-Newton' Technique for Enhanced Inference of Multivariate Polya Parameters and Topic Models
O. Khalifa
D. Corne
M. Chantler
11
0
0
22 Oct 2015
Accelerometer based Activity Classification with Variational Inference
  on Sticky HDP-SLDS
Accelerometer based Activity Classification with Variational Inference on Sticky HDP-SLDS
M. Basbug
Koray Ozcan
Senem Velipasalar
16
0
0
19 Oct 2015
A General Method for Robust Bayesian Modeling
A General Method for Robust Bayesian Modeling
Chong-Jun Wang
David M. Blei
OOD
15
53
0
17 Oct 2015
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
34
42
0
16 Oct 2015
Fast Second-Order Stochastic Backpropagation for Variational Inference
Fast Second-Order Stochastic Backpropagation for Variational Inference
Kai Fan
Ziteng Wang
J. Beck
James T. Kwok
Katherine A. Heller
ODL
BDL
DRL
23
45
0
09 Sep 2015
Stochastic gradient variational Bayes for gamma approximating
  distributions
Stochastic gradient variational Bayes for gamma approximating distributions
David A. Knowles
BDL
14
50
0
04 Sep 2015
Scalable Bayesian Non-Negative Tensor Factorization for Massive Count
  Data
Scalable Bayesian Non-Negative Tensor Factorization for Massive Count Data
Changwei Hu
Piyush Rai
Changyou Chen
Matthew Harding
Lawrence Carin
6
46
0
18 Aug 2015
Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors
Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors
Changwei Hu
Piyush Rai
Lawrence Carin
13
37
0
18 Aug 2015
Bayesian Dropout
Bayesian Dropout
Tue Herlau
Morten Mørup
Mikkel N. Schmidt
BDL
27
2
0
12 Aug 2015
Training Conditional Random Fields with Natural Gradient Descent
Training Conditional Random Fields with Natural Gradient Descent
Yuan Cao
BDL
14
0
0
10 Aug 2015
String and Membrane Gaussian Processes
String and Membrane Gaussian Processes
Yves-Laurent Kom Samo
Stephen J. Roberts
28
17
0
24 Jul 2015
The Population Posterior and Bayesian Inference on Streams
The Population Posterior and Bayesian Inference on Streams
James McInerney
Rajesh Ranganath
David M. Blei
41
7
0
19 Jul 2015
Incremental Variational Inference for Latent Dirichlet Allocation
Incremental Variational Inference for Latent Dirichlet Allocation
Cédric Archambeau
Beyza Ermis
BDL
18
6
0
17 Jul 2015
Sparse Probit Linear Mixed Model
Sparse Probit Linear Mixed Model
Stephan Mandt
F. Wenzel
Shinichi Nakajima
John P. Cunningham
C. Lippert
Marius Kloft
31
11
0
16 Jul 2015
Black-Box Policy Search with Probabilistic Programs
Black-Box Policy Search with Probabilistic Programs
Jan-Willem van de Meent
Brooks Paige
David Tolpin
Frank Wood
11
24
0
16 Jul 2015
Scalable Gaussian Process Classification via Expectation Propagation
Scalable Gaussian Process Classification via Expectation Propagation
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
32
52
0
16 Jul 2015
On the Convergence of Stochastic Variational Inference in Bayesian
  Networks
On the Convergence of Stochastic Variational Inference in Bayesian Networks
Ulrich Paquet
BDL
37
10
0
16 Jul 2015
Scalable Bayesian Inference for Excitatory Point Process Networks
Scalable Bayesian Inference for Excitatory Point Process Networks
Scott W. Linderman
Ryan P. Adams
22
58
0
12 Jul 2015
Inference for determinantal point processes without spectral knowledge
Inference for determinantal point processes without spectral knowledge
Rémi Bardenet
Michalis K. Titsias
17
24
0
04 Jul 2015
D-MFVI: Distributed Mean Field Variational Inference using Bregman ADMM
D-MFVI: Distributed Mean Field Variational Inference using Bregman ADMM
Behnam Babagholami-Mohamadabadi
Sejong Yoon
Vladimir Pavlovic
21
6
0
03 Jul 2015
Correlated Random Measures
Correlated Random Measures
Rajesh Ranganath
David M. Blei
22
21
0
02 Jul 2015
Online Learning to Sample
Online Learning to Sample
Guillaume Bouchard
Théo Trouillon
J. Perez
Adrien Gaidon
OffRL
OnRL
21
30
0
30 Jun 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
37
75
0
29 Jun 2015
An Empirical Study of Stochastic Variational Algorithms for the Beta
  Bernoulli Process
An Empirical Study of Stochastic Variational Algorithms for the Beta Bernoulli Process
Amar Shah
David A. Knowles
Zoubin Ghahramani
BDL
22
8
0
26 Jun 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic
  Algorithms
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
28
20
0
24 Jun 2015
A Convergent Gradient Descent Algorithm for Rank Minimization and
  Semidefinite Programming from Random Linear Measurements
A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements
Qinqing Zheng
John D. Lafferty
19
185
0
19 Jun 2015
Dependent Multinomial Models Made Easy: Stick Breaking with the
  Pólya-Gamma Augmentation
Dependent Multinomial Models Made Easy: Stick Breaking with the Pólya-Gamma Augmentation
Scott W. Linderman
Matthew J. Johnson
Ryan P. Adams
22
97
0
18 Jun 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
21
114
0
12 Jun 2015
On the properties of variational approximations of Gibbs posteriors
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier
James Ridgway
Nicolas Chopin
47
249
0
12 Jun 2015
Linear Response Methods for Accurate Covariance Estimates from Mean
  Field Variational Bayes
Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes
Ryan Giordano
Tamara Broderick
Michael I. Jordan
23
83
0
12 Jun 2015
Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models
Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models
Maans Magnusson
Leif Jonsson
M. Villani
David Broman
18
17
0
11 Jun 2015
Automatic Variational Inference in Stan
Automatic Variational Inference in Stan
A. Kucukelbir
Rajesh Ranganath
Andrew Gelman
David M. Blei
BDL
29
232
0
10 Jun 2015
Provable Bayesian Inference via Particle Mirror Descent
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
36
70
0
09 Jun 2015
Variational consensus Monte Carlo
Variational consensus Monte Carlo
Maxim Rabinovich
E. Angelino
Michael I. Jordan
26
50
0
09 Jun 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Appendix
Dropout as a Bayesian Approximation: Appendix
Y. Gal
Zoubin Ghahramani
BDL
22
64
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
A trust-region method for stochastic variational inference with
  applications to streaming data
A trust-region method for stochastic variational inference with applications to streaming data
Lucas Theis
Matthew D. Hoffman
20
42
0
28 May 2015
Stochastic Annealing for Variational Inference
Stochastic Annealing for Variational Inference
San Gultekin
Aonan Zhang
John Paisley
BDL
37
1
0
25 May 2015
Clustering via Content-Augmented Stochastic Blockmodels
Clustering via Content-Augmented Stochastic Blockmodels
J. M. Cashore
Xiaoting Zhao
Alexander A. Alemi
Yujia Liu
P. Frazier
24
0
0
25 May 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
20
4,105
0
21 May 2015
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
25
189
0
27 Apr 2015
Online Inference for Relation Extraction with a Reduced Feature Set
Online Inference for Relation Extraction with a Reduced Feature Set
Maxim Rabinovich
Cédric Archambeau
20
0
0
18 Apr 2015
On some provably correct cases of variational inference for topic models
On some provably correct cases of variational inference for topic models
Pranjal Awasthi
Andrej Risteski
VLM
BDL
22
16
0
23 Mar 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
16
78
0
09 Mar 2015
Previous
123...19202122
Next