ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Amortized Variational Inference for Deep Gaussian Processes
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
28
0
0
18 Sep 2024
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic
  process by leveraging Hamilton-Jacobi PDEs and score-based generative models
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
43
2
0
15 Sep 2024
Uncertainty Quantification in Seismic Inversion Through Integrated
  Importance Sampling and Ensemble Methods
Uncertainty Quantification in Seismic Inversion Through Integrated Importance Sampling and Ensemble Methods
Luping Qu
Mauricio Araya-Polo
Laurent Demanet
61
0
0
10 Sep 2024
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with
  Counterfactual Reasoning-based Artifact Disentanglement
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement
Seungheun Baek
Soyon Park
Y. T. Chok
Junhyun Lee
Jueon Park
Mogan Gim
Jaewoo Kang
CML
43
1
0
09 Sep 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
31
2
0
29 Aug 2024
Decentralised Variational Inference Frameworks for Multi-object Tracking
  on Sensor Network
Decentralised Variational Inference Frameworks for Multi-object Tracking on Sensor Network
Qing Li
Runze Gan
S. Godsill
29
0
0
24 Aug 2024
Accelerated Markov Chain Monte Carlo Using Adaptive Weighting Scheme
Accelerated Markov Chain Monte Carlo Using Adaptive Weighting Scheme
Y Samuel Wang
Wenyu Chen
Shimin Shan
34
0
0
23 Aug 2024
Quantification of total uncertainty in the physics-informed
  reconstruction of CVSim-6 physiology
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
31
3
0
13 Aug 2024
Variational Learning of Gaussian Process Latent Variable Models through
  Stochastic Gradient Annealed Importance Sampling
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
31
0
0
13 Aug 2024
Fully Bayesian Differential Gaussian Processes through Stochastic
  Differential Equations
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
32
0
0
12 Aug 2024
A Psychology-based Unified Dynamic Framework for Curriculum Learning
A Psychology-based Unified Dynamic Framework for Curriculum Learning
Guangyu Meng
Qingkai Zeng
John P. Lalor
Hong-ye Yu
31
0
0
09 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
28
0
0
07 Aug 2024
Weak neural variational inference for solving Bayesian inverse problems
  without forward models: applications in elastography
Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography
Vincent C. Scholz
Yaohua Zang
P. Koutsourelakis
41
3
0
30 Jul 2024
Federated Automatic Latent Variable Selection in Multi-output Gaussian
  Processes
Federated Automatic Latent Variable Selection in Multi-output Gaussian Processes
Jingyi Gao
Seokhyun Chung
FedML
41
0
0
24 Jul 2024
cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet
  Process
cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process
Yihang Chen
Tsai Hor Chan
Guosheng Yin
Yuming Jiang
Lequan Yu
35
0
0
16 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational
  Inference
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
31
0
0
02 Jul 2024
Electrostatics-based particle sampling and approximate inference
Electrostatics-based particle sampling and approximate inference
Yongchao Huang
DiffM
35
2
0
28 Jun 2024
Probabilistic Programming with Programmable Variational Inference
Probabilistic Programming with Programmable Variational Inference
McCoy R. Becker
Alexander K. Lew
Xiaoyan Wang
Matin Ghavami
Mathieu Huot
Martin Rinard
Vikash K. Mansinghka
59
3
0
22 Jun 2024
Hierarchical thematic classification of major conference proceedings
Hierarchical thematic classification of major conference proceedings
Arsentii Kuzmin
Alexander Aduenko
Vadim Strijov
23
0
0
21 Jun 2024
Improving Zero-shot LLM Re-Ranker with Risk Minimization
Improving Zero-shot LLM Re-Ranker with Risk Minimization
Xiaowei Yuan
Zhao Yang
Yequan Wang
Jun Zhao
Kang Liu
33
1
0
19 Jun 2024
Variational Distillation of Diffusion Policies into Mixture of Experts
Variational Distillation of Diffusion Policies into Mixture of Experts
Hongyi Zhou
Denis Blessing
Ge Li
Onur Celik
Xiaogang Jia
Gerhard Neumann
Rudolf Lioutikov
DiffM
46
3
0
18 Jun 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational
  Inference in Bayesian neural networks
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCV
BDL
46
2
0
06 Jun 2024
POAM: Probabilistic Online Attentive Mapping for Efficient Robotic
  Information Gathering
POAM: Probabilistic Online Attentive Mapping for Efficient Robotic Information Gathering
Weizhe (Wesley) Chen
Lantao Liu
R. Khardon
28
1
0
06 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
56
1
0
04 Jun 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs
  with applications in heterogeneous media
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
39
3
0
29 May 2024
Federated Learning for Non-factorizable Models using Deep Generative
  Prior Approximations
Federated Learning for Non-factorizable Models using Deep Generative Prior Approximations
Conor Hassan
Joshua J Bon
Elizaveta Semenova
Antonietta Mira
Kerrie Mengersen
26
0
0
25 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Visual Analysis of Prediction Uncertainty in Neural Networks for Deep
  Image Synthesis
Visual Analysis of Prediction Uncertainty in Neural Networks for Deep Image Synthesis
Soumya Dutta
Faheem Nizar
Ahmad Amaan
Ayan Acharya
AAML
48
1
0
22 May 2024
Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count
  Data via Data Augmentation
Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation
Yididiya Y. Nadew
Xuhui Fan
Christopher J. Quinn
19
2
0
19 May 2024
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Sarah Zhao
Aditya Ravuri
V. Lalchand
Neil D. Lawrence
BDL
VLM
23
0
0
06 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
50
0
0
02 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural
  Networks
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Variational Bayesian surrogate modelling with application to robust
  design optimisation
Variational Bayesian surrogate modelling with application to robust design optimisation
Thomas A. Archbold
Ieva Kazlauskaite
F. Cirak
25
1
0
23 Apr 2024
Scalable Bayesian Image-on-Scalar Regression for Population-Scale
  Neuroimaging Data Analysis
Scalable Bayesian Image-on-Scalar Regression for Population-Scale Neuroimaging Data Analysis
Yuliang Xu
Timothy D. Johnson
Thomas E. Nichols
Jian Kang
23
0
0
19 Apr 2024
Variational Bayesian Last Layers
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
63
23
0
17 Apr 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
52
0
0
09 Apr 2024
Bayesian Inference for Consistent Predictions in Overparameterized
  Nonlinear Regression
Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression
Tomoya Wakayama
BDL
57
0
0
06 Apr 2024
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in
  Quantifying Uncertainty Propagation
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
AI4CE
27
1
0
31 Mar 2024
Neural Clustering based Visual Representation Learning
Neural Clustering based Visual Representation Learning
Guikun Chen
Xia Li
Yi Yang
Wenguan Wang
SSL
37
8
0
26 Mar 2024
Federated Bayesian Deep Learning: The Application of Statistical
  Aggregation Methods to Bayesian Models
Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models
John Fischer
Marko Orescanin
Justin Loomis
Patrick McClure
FedML
51
3
0
22 Mar 2024
Variational Inference of Parameters in Opinion Dynamics Models
Variational Inference of Parameters in Opinion Dynamics Models
Jacopo Lenti
Fabrizio Silvestri
G. D. F. Morales
34
3
0
08 Mar 2024
Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC
Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC
Sikun Yang
Heinz Koeppl
26
0
0
29 Feb 2024
Bayesian Differentiable Physics for Cloth Digitalization
Bayesian Differentiable Physics for Cloth Digitalization
Deshan Gong
Ningtao Mao
He Wang
AI4CE
32
0
0
27 Feb 2024
Variational Learning is Effective for Large Deep Networks
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
43
22
0
27 Feb 2024
When in Doubt, Think Slow: Iterative Reasoning with Latent Imagination
When in Doubt, Think Slow: Iterative Reasoning with Latent Imagination
Martin A Benfeghoul
Umais Zahid
Qinghai Guo
Z. Fountas
OffRL
LRM
40
2
0
23 Feb 2024
Synthetic location trajectory generation using categorical diffusion
  models
Synthetic location trajectory generation using categorical diffusion models
Simon Dirmeier
Ye Hong
Fernando Pérez-Cruz
21
0
0
19 Feb 2024
Monte Carlo with kernel-based Gibbs measures: Guarantees for
  probabilistic herding
Monte Carlo with kernel-based Gibbs measures: Guarantees for probabilistic herding
Martin Rouault
Rémi Bardenet
Mylène Maïda
54
0
0
18 Feb 2024
HEAL: Brain-inspired Hyperdimensional Efficient Active Learning
HEAL: Brain-inspired Hyperdimensional Efficient Active Learning
Yang Ni
Zhuowen Zou
Wenjun Huang
Hanning Chen
William Youngwoo Chung
Samuel Cho
R. Krishnan
Pietro Mercati
Mohsen Imani
34
2
0
17 Feb 2024
Variational Entropy Search for Adjusting Expected Improvement
Variational Entropy Search for Adjusting Expected Improvement
Nuojin Cheng
Stephen Becker
28
1
0
17 Feb 2024
Previous
12345...202122
Next