ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.7051
  4. Cited By
Stochastic Variational Inference

Stochastic Variational Inference

29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Inference"

50 / 1,065 papers shown
Title
Latent Gaussian Processes for Distribution Estimation of Multivariate
  Categorical Data
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Y. Gal
Yutian Chen
Zoubin Ghahramani
SyDa
29
41
0
07 Mar 2015
Local Expectation Gradients for Doubly Stochastic Variational Inference
Local Expectation Gradients for Doubly Stochastic Variational Inference
Michalis K. Titsias
BDL
19
9
0
04 Mar 2015
Covariance Matrices and Influence Scores for Mean Field Variational
  Bayes
Covariance Matrices and Influence Scores for Mean Field Variational Bayes
Ryan Giordano
Tamara Broderick
18
2
0
26 Feb 2015
Breaking Sticks and Ambiguities with Adaptive Skip-gram
Breaking Sticks and Ambiguities with Adaptive Skip-gram
Sergey Bartunov
D. Kondrashkin
A. Osokin
Dmitry Vetrov
BDL
28
161
0
25 Feb 2015
Topic-adjusted visibility metric for scientific articles
Topic-adjusted visibility metric for scientific articles
Linda S. L. Tan
Aik Hui Chan
Tian Zheng
32
8
0
25 Feb 2015
Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization
Maren Mahsereci
Philipp Hennig
ODL
26
126
0
10 Feb 2015
A Collaborative Kalman Filter for Time-Evolving Dyadic Processes
A Collaborative Kalman Filter for Time-Evolving Dyadic Processes
San Gultekin
John Paisley
19
43
0
22 Jan 2015
(Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics
(Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics
Sebastian J. Vollmer
K. Zygalakis
and Yee Whye Teh
45
49
0
02 Jan 2015
Expectation propagation as a way of life: A framework for Bayesian
  inference on partitioned data
Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data
Aki Vehtari
Andrew Gelman
Tuomas Sivula
Pasi Jylänki
Dustin Tran
Swupnil Sahai
Paul Blomstedt
John P. Cunningham
D. Schiminovich
Christian P. Robert
28
18
0
16 Dec 2014
Nested Variational Compression in Deep Gaussian Processes
Nested Variational Compression in Deep Gaussian Processes
J. Hensman
Neil D. Lawrence
BDL
25
67
0
03 Dec 2014
Streaming Variational Inference for Bayesian Nonparametric Mixture
  Models
Streaming Variational Inference for Bayesian Nonparametric Mixture Models
Alex Tank
N. Foti
E. Fox
BDL
29
37
0
01 Dec 2014
A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal
  Population Codes During Spatial Navigation
A Nonparametric Bayesian Approach to Uncovering Rat Hippocampal Population Codes During Spatial Navigation
Scott W. Linderman
Matthew J. Johnson
M. Wilson
Z. Chen
40
9
0
27 Nov 2014
Big Learning with Bayesian Methods
Big Learning with Bayesian Methods
Jun Zhu
Jianfei Chen
Wenbo Hu
Bo Zhang
BDL
41
84
0
24 Nov 2014
Variational Tempering
Variational Tempering
Stephan Mandt
James McInerney
Farhan Abrol
Rajesh Ranganath
David M. Blei
BDL
24
55
0
07 Nov 2014
Stochastic Variational Inference for Hidden Markov Models
Stochastic Variational Inference for Hidden Markov Models
N. Foti
Jason Xu
Dillon Laird
E. Fox
BDL
26
93
0
06 Nov 2014
Population Empirical Bayes
Population Empirical Bayes
A. Kucukelbir
David M. Blei
29
1
0
02 Nov 2014
Covariance Matrices for Mean Field Variational Bayes
Covariance Matrices for Mean Field Variational Bayes
Ryan Giordano
Tamara Broderick
29
0
0
24 Oct 2014
Model Selection for Topic Models via Spectral Decomposition
Model Selection for Topic Models via Spectral Decomposition
Dehua Cheng
Xinran He
Yan Liu
31
9
0
23 Oct 2014
BayesPy: Variational Bayesian Inference in Python
BayesPy: Variational Bayesian Inference in Python
Jaakko Luttinen
BDL
21
16
0
03 Oct 2014
Topic Modeling of Hierarchical Corpora
Topic Modeling of Hierarchical Corpora
Do-kyum Kim
G. Voelker
Lawrence K. Saul
19
0
0
11 Sep 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
26
228
0
01 Sep 2014
Automated Machine Learning on Big Data using Stochastic Algorithm Tuning
Automated Machine Learning on Big Data using Stochastic Algorithm Tuning
T. Nickson
Michael A. Osborne
S. Reece
Stephen J. Roberts
29
25
0
30 Jul 2014
Automatic discovery of cell types and microcircuitry from neural
  connectomics
Automatic discovery of cell types and microcircuitry from neural connectomics
Eric Jonas
Konrad Paul Kording
44
61
0
15 Jul 2014
Variational Gaussian Process State-Space Models
Variational Gaussian Process State-Space Models
R. Frigola
Yutian Chen
C. Rasmussen
BDL
23
176
0
18 Jun 2014
Smoothed Gradients for Stochastic Variational Inference
Smoothed Gradients for Stochastic Variational Inference
Stephan Mandt
David M. Blei
BDL
DiffM
36
29
0
13 Jun 2014
Peacock: Learning Long-Tail Topic Features for Industrial Applications
Peacock: Learning Long-Tail Topic Features for Industrial Applications
Yi Wang
Xuemin Zhao
Zhenlong Sun
Hao Yan
Lifeng Wang
Zhihui Jin
Liubin Wang
Yang Gao
Ching Law
Jia Zeng
AI4TS
103
61
0
17 May 2014
Structured Stochastic Variational Inference
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
26
87
0
16 Apr 2014
Accelerating MCMC via Parallel Predictive Prefetching
Accelerating MCMC via Parallel Predictive Prefetching
E. Angelino
E. Kohler
Amos Waterland
Margo Seltzer
Ryan P. Adams
32
38
0
28 Mar 2014
Firefly Monte Carlo: Exact MCMC with Subsets of Data
Firefly Monte Carlo: Exact MCMC with Subsets of Data
D. Maclaurin
Ryan P. Adams
31
177
0
22 Mar 2014
Hierarchical Dirichlet Scaling Process
Hierarchical Dirichlet Scaling Process
Dongwoo Kim
Alice H. Oh
29
14
0
22 Mar 2014
Scalable and Robust Construction of Topical Hierarchies
Scalable and Robust Construction of Topical Hierarchies
Chi Wang
Xueqing Liu
Yanglei Song
Jiawei Han
AI4TS
36
5
0
13 Mar 2014
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Robust and Scalable Bayes via a Median of Subset Posterior Measures
Stanislav Minsker
Sanvesh Srivastava
Lizhen Lin
David B. Dunson
51
108
0
11 Mar 2014
Scaling Nonparametric Bayesian Inference via Subsample-Annealing
Scaling Nonparametric Bayesian Inference via Subsample-Annealing
F. Obermeyer
Jonathan Glidden
Eric Jonas
23
12
0
22 Feb 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
42
896
0
17 Feb 2014
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
33
150
0
06 Feb 2014
Parsimonious Topic Models with Salient Word Discovery
Parsimonious Topic Models with Salient Word Discovery
Hossein Soleimani
David J. Miller
35
32
0
22 Jan 2014
Stochastic Backpropagation and Approximate Inference in Deep Generative
  Models
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
Danilo Jimenez Rezende
S. Mohamed
Daan Wierstra
BDL
37
138
0
16 Jan 2014
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Tobias Glasmachers
Ürün Dogan
31
4
0
15 Jan 2014
Bayesian Conditional Density Filtering
Bayesian Conditional Density Filtering
S. Qamar
Rajarshi Guhaniyogi
David B. Dunson
45
11
0
15 Jan 2014
Fast nonparametric clustering of structured time-series
Fast nonparametric clustering of structured time-series
J. Hensman
M. Rattray
Neil D. Lawrence
AI4TS
35
61
0
08 Jan 2014
On Using Control Variates with Stochastic Approximation for Variational
  Bayes and its Connection to Stochastic Linear Regression
On Using Control Variates with Stochastic Approximation for Variational Bayes and its Connection to Stochastic Linear Regression
Tim Salimans
David A. Knowles
BDL
32
33
0
06 Jan 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
36
1,157
0
31 Dec 2013
Petuum: A New Platform for Distributed Machine Learning on Big Data
Petuum: A New Platform for Distributed Machine Learning on Big Data
Eric P. Xing
Qirong Ho
Wei-Ming Dai
Jin Kyu Kim
Jinliang Wei
Seunghak Lee
Xun Zheng
Junming Yin
Abhimanu Kumar
Eric P. Xing
47
35
0
30 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
34
17,001
0
20 Dec 2013
A Generative Product-of-Filters Model of Audio
A Generative Product-of-Filters Model of Audio
Dawen Liang
Matthew D. Hoffman
G. J. Mysore
TPM
34
5
0
20 Dec 2013
Online Bayesian Passive-Aggressive Learning
Online Bayesian Passive-Aggressive Learning
Tianlin Shi
Jun Zhu
61
38
0
12 Dec 2013
Scalable Recommendation with Poisson Factorization
Scalable Recommendation with Poisson Factorization
Prem Gopalan
Jake M. Hofman
David M. Blei
32
156
0
07 Nov 2013
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
35
1,216
0
26 Sep 2013
One-class Collaborative Filtering with Random Graphs: Annotated Version
One-class Collaborative Filtering with Random Graphs: Annotated Version
Ulrich Paquet
Noam Koenigstein
BDL
31
3
0
26 Sep 2013
Scalable Probabilistic Entity-Topic Modeling
Scalable Probabilistic Entity-Topic Modeling
N. Houlsby
Massimiliano Ciaramita
39
4
0
02 Sep 2013
Previous
123...202122
Next