Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.7051
Cited By
Stochastic Variational Inference
29 June 2012
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Inference"
50 / 1,065 papers shown
Title
Independent finite approximations for Bayesian nonparametric inference
Tin D. Nguyen
Jonathan H. Huggins
L. Masoero
Lester W. Mackey
Tamara Broderick
TPM
23
4
0
22 Sep 2020
Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data
Jonathan Pilault
Amine Elhattami
C. Pal
CLL
MoE
30
89
0
19 Sep 2020
Efficient Variational Bayes Learning of Graphical Models with Smooth Structural Changes
Hang Yu
Songwei Wu
Justin Dauwels
21
5
0
16 Sep 2020
Fixed Inducing Points Online Bayesian Calibration for Computer Models with an Application to a Scale-Resolving CFD Simulation
Y. Duan
M. Eaton
Michael Bluck
6
4
0
15 Sep 2020
Deep Switching Auto-Regressive Factorization:Application to Time Series Forecasting
Amirreza Farnoosh
Bahar Azari
Sarah Ostadabbas
BDL
AI4TS
18
20
0
10 Sep 2020
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
Kasper Pryds Rolsted
Dario Pacino
Filipe Rodrigues
22
14
0
10 Sep 2020
Online Estimation and Community Detection of Network Point Processes for Event Streams
Guanhua Fang
Owen G. Ward
Tian Zheng
4
3
0
03 Sep 2020
Robust, Accurate Stochastic Optimization for Variational Inference
Akash Kumar Dhaka
Alejandro Catalina
Michael Riis Andersen
Maans Magnusson
Jonathan H. Huggins
Aki Vehtari
30
33
0
01 Sep 2020
β
β
β
-Cores: Robust Large-Scale Bayesian Data Summarization in the Presence of Outliers
Dionysis Manousakas
Cecilia Mascolo
25
2
0
31 Aug 2020
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
21
21
0
28 Aug 2020
Channel-Directed Gradients for Optimization of Convolutional Neural Networks
Dong Lao
Peihao Zhu
Peter Wonka
G. Sundaramoorthi
40
3
0
25 Aug 2020
An Efficient Confidence Measure-Based Evaluation Metric for Breast Cancer Screening Using Bayesian Neural Networks
Anika Tabassum
N. Khan
UQCV
12
1
0
12 Aug 2020
Comparative Analysis of the Hidden Markov Model and LSTM: A Simulative Approach
M. Tadayon
G. Pottie
BDL
AI4TS
7
5
0
09 Aug 2020
Predicting the Humorousness of Tweets Using Gaussian Process Preference Learning
Tristan Miller
E. Dinh
Edwin Simpson
Iryna Gurevych
20
5
0
03 Aug 2020
Variational approximations of empirical Bayes posteriors in high-dimensional linear models
Yue Yang
Ryan Martin
28
7
0
31 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
19
4
0
21 Jul 2020
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and Uncertainty Quantification from Limited Observations
K. Gundersen
A. Oleynik
N. Blaser
G. Alendal
BDL
30
28
0
19 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
29
611
0
14 Jul 2020
Control as Hybrid Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
21
9
0
11 Jul 2020
Training Restricted Boltzmann Machines with Binary Synapses using the Bayesian Learning Rule
Xiangming Meng
27
0
0
09 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Fast Bayesian Estimation of Spatial Count Data Models
P. Bansal
Rico Krueger
D. Graham
31
8
0
07 Jul 2020
Stochastic Variational Bayesian Inference for a Nonlinear Forward Model
M. Chappell
A. Groves
M. Woolrich
11
353
0
03 Jul 2020
Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective
Jacky Y. Zhang
Rekha Khanna
Anastasios Kyrillidis
Oluwasanmi Koyejo
14
0
0
01 Jul 2020
Learning Sparse Prototypes for Text Generation
Junxian He
Taylor Berg-Kirkpatrick
Graham Neubig
27
23
0
29 Jun 2020
Automatic Tuning of Stochastic Gradient Descent with Bayesian Optimisation
Victor Picheny
Vincent Dutordoir
A. Artemev
N. Durrande
19
2
0
25 Jun 2020
Stratified stochastic variational inference for high-dimensional network factor model
E. Aliverti
Massimiliano Russo
BDL
10
8
0
25 Jun 2020
Normalizing Flows Across Dimensions
Edmond Cunningham
Renos Zabounidis
Abhinav Agrawal
Ina Fiterau
Daniel Sheldon
DRL
14
26
0
23 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
21
43
0
19 Jun 2020
Distortion estimates for approximate Bayesian inference
Hanwen Xing
Geoff K. Nicholls
J. Lee
16
7
0
19 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Analytical Probability Distributions and EM-Learning for Deep Generative Networks
Randall Balestriero
Sébastien Paris
Richard G. Baraniuk
UQCV
DRL
16
1
0
17 Jun 2020
On the Variational Posterior of Dirichlet Process Deep Latent Gaussian Mixture Models
Amine Echraibi
Joachim Flocon-Cholet
Stéphane Gosselin
Sandrine Vaton
BDL
6
4
0
16 Jun 2020
PAC-Bayesian Generalization Bounds for MultiLayer Perceptrons
Xinjie Lan
Xin Guo
Kenneth Barner
19
3
0
16 Jun 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
35
27
0
15 Jun 2020
High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder
Nicholas Gao
M. Wilson
T. Vandal
W. Vinci
R. Nemani
E. Rieffel
DRL
17
19
0
13 Jun 2020
Reinforcement Learning as Iterative and Amortised Inference
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
OffRL
18
3
0
13 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
6
2
0
12 Jun 2020
Multi-index Antithetic Stochastic Gradient Algorithm
Mateusz B. Majka
Marc Sabate Vidales
Łukasz Szpruch
37
0
0
10 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
19
24
0
09 Jun 2020
Variational Model-based Policy Optimization
Yinlam Chow
Brandon Cui
Moonkyung Ryu
Mohammad Ghavamzadeh
OffRL
22
12
0
09 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
44
14
0
08 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
18
2
0
04 Jun 2020
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
P. Nair
GP
9
3
0
04 Jun 2020
A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables
Maximilian Rixner
P. Koutsourelakis
AI4CE
13
18
0
02 Jun 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
Correlated Mixed Membership Modeling of Somatic Mutations
Rahul Mehta
M. Karaman
6
0
0
21 May 2020
Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine Translation
Bryan Eikema
Wilker Aziz
16
131
0
20 May 2020
Infinite-dimensional gradient-based descent for alpha-divergence minimisation
Kamélia Daudel
Randal Douc
Franccois Portier
21
17
0
20 May 2020
Previous
1
2
3
...
9
10
11
...
20
21
22
Next