ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Approximation Based Variance Reduction for Reparameterization Gradients
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDLDRL
73
10
0
29 Jul 2020
Accounting for missing actors in interaction network inference from
  abundance data
Accounting for missing actors in interaction network inference from abundance data
Raphaelle Momal
Stephane S. Robin
Christophe Ambroise
CML
45
5
0
28 Jul 2020
Generative networks as inverse problems with fractional wavelet
  scattering networks
Generative networks as inverse problems with fractional wavelet scattering networks
Jiasong Wu
Jing Zhang
Fuzhi Wu
Youyong Kong
Guanyu Yang
L. Senhadji
H. Shu
GAN
49
1
0
28 Jul 2020
Online neural connectivity estimation with ensemble stimulation
Online neural connectivity estimation with ensemble stimulation
A. Draelos
Eva A. Naumann
John M. Pearson
90
5
0
27 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for
  Neural Networks
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
46
4
0
21 Jul 2020
Mixture Representation Learning with Coupled Autoencoders
Mixture Representation Learning with Coupled Autoencoders
Yeganeh M. Marghi
Rohan Gala
U. Sümbül
BDL
25
0
0
20 Jul 2020
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and
  Uncertainty Quantification from Limited Observations
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and Uncertainty Quantification from Limited Observations
K. Gundersen
A. Oleynik
N. Blaser
G. Alendal
BDL
75
29
0
19 Jul 2020
Probabilistic Active Meta-Learning
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
98
35
0
17 Jul 2020
Deep Learning in Protein Structural Modeling and Design
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
89
161
0
16 Jul 2020
The Monte Carlo Transformer: a stochastic self-attention model for
  sequence prediction
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction
Alice Martin
Charles Ollion
Florian Strub
Sylvain Le Corff
Olivier Pietquin
55
6
0
15 Jul 2020
Measurement error models: from nonparametric methods to deep neural
  networks
Measurement error models: from nonparametric methods to deep neural networks
Zhirui Hu
Z. Ke
Jun S. Liu
26
4
0
15 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
57
34
0
14 Jul 2020
A Class of Conjugate Priors for Multinomial Probit Models which Includes
  the Multivariate Normal One
A Class of Conjugate Priors for Multinomial Probit Models which Includes the Multivariate Normal One
A. Fasano
Daniele Durante
76
27
0
14 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OODBDLUQCV
99
636
0
14 Jul 2020
Dynamics of coordinate ascent variational inference: A case study in 2D
  Ising models
Dynamics of coordinate ascent variational inference: A case study in 2D Ising models
Sean Plummer
D. Pati
A. Bhattacharya
109
21
0
13 Jul 2020
Bridging Maximum Likelihood and Adversarial Learning via
  $α$-Divergence
Bridging Maximum Likelihood and Adversarial Learning via ααα-Divergence
Miaoyun Zhao
Yulai Cong
Shuyang Dai
Lawrence Carin
GAN
58
10
0
13 Jul 2020
Estimating Stochastic Poisson Intensities Using Deep Latent Models
Estimating Stochastic Poisson Intensities Using Deep Latent Models
Ruixin Wang
Prateek Jaiswal
Harsha Honnappa
38
7
0
12 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
75
20
0
10 Jul 2020
Robust Bayesian Classification Using an Optimistic Score Ratio
Robust Bayesian Classification Using an Optimistic Score Ratio
Viet Anh Nguyen
Nian Si
Jose H. Blanchet
84
13
0
08 Jul 2020
Fast Bayesian Estimation of Spatial Count Data Models
Fast Bayesian Estimation of Spatial Count Data Models
P. Bansal
Rico Krueger
D. Graham
86
8
0
07 Jul 2020
Qualitative Analysis of Monte Carlo Dropout
Qualitative Analysis of Monte Carlo Dropout
Ronald Seoh
UQCVBDL
52
29
0
03 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic
  Variational Inference
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
62
16
0
01 Jul 2020
Multi-Task Variational Information Bottleneck
Multi-Task Variational Information Bottleneck
Weizhu Qian
Bowei Chen
Yichao Zhang
Guanghui Wen
Franck Gechter
79
11
0
01 Jul 2020
Sinkhorn EM: An Expectation-Maximization algorithm based on entropic
  optimal transport
Sinkhorn EM: An Expectation-Maximization algorithm based on entropic optimal transport
Gonzalo E. Mena
Amin Nejatbakhsh
E. Varol
Jonathan Niles-Weed
OT
21
13
0
30 Jun 2020
VAE-KRnet and its applications to variational Bayes
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDLDRL
89
13
0
29 Jun 2020
Statistical Foundation of Variational Bayes Neural Networks
Statistical Foundation of Variational Bayes Neural Networks
Shrijita Bhattacharya
T. Maiti
BDL
47
11
0
29 Jun 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
80
9
0
28 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
74
22
0
26 Jun 2020
Neural Decomposition: Functional ANOVA with Variational Autoencoders
Neural Decomposition: Functional ANOVA with Variational Autoencoders
Kaspar Märtens
C. Yau
DRL
33
10
0
25 Jun 2020
Stratified stochastic variational inference for high-dimensional network
  factor model
Stratified stochastic variational inference for high-dimensional network factor model
E. Aliverti
Massimiliano Russo
BDL
58
8
0
25 Jun 2020
Fast, Optimal, and Targeted Predictions using Parametrized Decision
  Analysis
Fast, Optimal, and Targeted Predictions using Parametrized Decision Analysis
Daniel R. Kowal
47
0
0
23 Jun 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
100
63
0
22 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDLUQCV
82
211
0
22 Jun 2020
Isometric Gaussian Process Latent Variable Model for Dissimilarity Data
Isometric Gaussian Process Latent Variable Model for Dissimilarity Data
Martin Jørgensen
Søren Hauberg
66
7
0
21 Jun 2020
Towards Adaptive Benthic Habitat Mapping
Towards Adaptive Benthic Habitat Mapping
J. Shields
Oscar Pizarro
Stefan B. Williams
47
15
0
20 Jun 2020
Constraining Variational Inference with Geometric Jensen-Shannon
  Divergence
Constraining Variational Inference with Geometric Jensen-Shannon Divergence
J. Deasy
Nikola Simidjievski
Pietro Lio
DRL
91
30
0
18 Jun 2020
DrNAS: Dirichlet Neural Architecture Search
DrNAS: Dirichlet Neural Architecture Search
Xiangning Chen
Ruochen Wang
Minhao Cheng
Xiaocheng Tang
Cho-Jui Hsieh
OOD
107
103
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPMBDL
114
41
0
18 Jun 2020
On the Variational Posterior of Dirichlet Process Deep Latent Gaussian
  Mixture Models
On the Variational Posterior of Dirichlet Process Deep Latent Gaussian Mixture Models
Amine Echraibi
Joachim Flocon-Cholet
Stéphane Gosselin
Sandrine Vaton
BDL
31
4
0
16 Jun 2020
PAC-Bayesian Generalization Bounds for MultiLayer Perceptrons
PAC-Bayesian Generalization Bounds for MultiLayer Perceptrons
Xinjie Lan
Xin Guo
Kenneth Barner
47
3
0
16 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
102
42
0
15 Jun 2020
Hindsight Expectation Maximization for Goal-conditioned Reinforcement
  Learning
Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning
Yunhao Tang
A. Kucukelbir
OffRL
68
16
0
13 Jun 2020
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor
  Projections
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
Csaba Tóth
Patric Bonnier
Harald Oberhauser
AI4TS
87
14
0
12 Jun 2020
Query Training: Learning a Worse Model to Infer Better Marginals in
  Undirected Graphical Models with Hidden Variables
Query Training: Learning a Worse Model to Infer Better Marginals in Undirected Graphical Models with Hidden Variables
Miguel Lázaro-Gredilla
Wolfgang Lehrach
Nishad Gothoskar
Guangyao Zhou
Antoine Dedieu
Dileep George
TPM
57
1
0
11 Jun 2020
Conditional Sampling with Monotone GANs: from Generative Models to
  Likelihood-Free Inference
Conditional Sampling with Monotone GANs: from Generative Models to Likelihood-Free Inference
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
OTGAN
109
24
0
11 Jun 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
Wat zei je? Detecting Out-of-Distribution Translations with Variational
  Transformers
Wat zei je? Detecting Out-of-Distribution Translations with Variational Transformers
Tim Z. Xiao
Aidan Gomez
Y. Gal
UQLM
92
35
0
08 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
92
10
0
08 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Improving Inference for Neural Image Compression
Improving Inference for Neural Image Compression
Yibo Yang
Robert Bamler
Stephan Mandt
97
123
0
07 Jun 2020
Previous
123...252627...353637
Next