Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
Approximation Based Variance Reduction for Reparameterization Gradients
Tomas Geffner
Justin Domke
BDL
DRL
73
10
0
29 Jul 2020
Accounting for missing actors in interaction network inference from abundance data
Raphaelle Momal
Stephane S. Robin
Christophe Ambroise
CML
45
5
0
28 Jul 2020
Generative networks as inverse problems with fractional wavelet scattering networks
Jiasong Wu
Jing Zhang
Fuzhi Wu
Youyong Kong
Guanyu Yang
L. Senhadji
H. Shu
GAN
49
1
0
28 Jul 2020
Online neural connectivity estimation with ensemble stimulation
A. Draelos
Eva A. Naumann
John M. Pearson
90
5
0
27 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
46
4
0
21 Jul 2020
Mixture Representation Learning with Coupled Autoencoders
Yeganeh M. Marghi
Rohan Gala
U. Sümbül
BDL
25
0
0
20 Jul 2020
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and Uncertainty Quantification from Limited Observations
K. Gundersen
A. Oleynik
N. Blaser
G. Alendal
BDL
75
29
0
19 Jul 2020
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
98
35
0
17 Jul 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
89
161
0
16 Jul 2020
The Monte Carlo Transformer: a stochastic self-attention model for sequence prediction
Alice Martin
Charles Ollion
Florian Strub
Sylvain Le Corff
Olivier Pietquin
55
6
0
15 Jul 2020
Measurement error models: from nonparametric methods to deep neural networks
Zhirui Hu
Z. Ke
Jun S. Liu
26
4
0
15 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
57
34
0
14 Jul 2020
A Class of Conjugate Priors for Multinomial Probit Models which Includes the Multivariate Normal One
A. Fasano
Daniele Durante
76
27
0
14 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
99
636
0
14 Jul 2020
Dynamics of coordinate ascent variational inference: A case study in 2D Ising models
Sean Plummer
D. Pati
A. Bhattacharya
109
21
0
13 Jul 2020
Bridging Maximum Likelihood and Adversarial Learning via
α
α
α
-Divergence
Miaoyun Zhao
Yulai Cong
Shuyang Dai
Lawrence Carin
GAN
58
10
0
13 Jul 2020
Estimating Stochastic Poisson Intensities Using Deep Latent Models
Ruixin Wang
Prateek Jaiswal
Harsha Honnappa
38
7
0
12 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
75
20
0
10 Jul 2020
Robust Bayesian Classification Using an Optimistic Score Ratio
Viet Anh Nguyen
Nian Si
Jose H. Blanchet
84
13
0
08 Jul 2020
Fast Bayesian Estimation of Spatial Count Data Models
P. Bansal
Rico Krueger
D. Graham
86
8
0
07 Jul 2020
Qualitative Analysis of Monte Carlo Dropout
Ronald Seoh
UQCV
BDL
52
29
0
03 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
62
16
0
01 Jul 2020
Multi-Task Variational Information Bottleneck
Weizhu Qian
Bowei Chen
Yichao Zhang
Guanghui Wen
Franck Gechter
79
11
0
01 Jul 2020
Sinkhorn EM: An Expectation-Maximization algorithm based on entropic optimal transport
Gonzalo E. Mena
Amin Nejatbakhsh
E. Varol
Jonathan Niles-Weed
OT
21
13
0
30 Jun 2020
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDL
DRL
89
13
0
29 Jun 2020
Statistical Foundation of Variational Bayes Neural Networks
Shrijita Bhattacharya
T. Maiti
BDL
47
11
0
29 Jun 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
80
9
0
28 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
74
22
0
26 Jun 2020
Neural Decomposition: Functional ANOVA with Variational Autoencoders
Kaspar Märtens
C. Yau
DRL
33
10
0
25 Jun 2020
Stratified stochastic variational inference for high-dimensional network factor model
E. Aliverti
Massimiliano Russo
BDL
58
8
0
25 Jun 2020
Fast, Optimal, and Targeted Predictions using Parametrized Decision Analysis
Daniel R. Kowal
47
0
0
23 Jun 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
100
63
0
22 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
82
211
0
22 Jun 2020
Isometric Gaussian Process Latent Variable Model for Dissimilarity Data
Martin Jørgensen
Søren Hauberg
66
7
0
21 Jun 2020
Towards Adaptive Benthic Habitat Mapping
J. Shields
Oscar Pizarro
Stefan B. Williams
47
15
0
20 Jun 2020
Constraining Variational Inference with Geometric Jensen-Shannon Divergence
J. Deasy
Nikola Simidjievski
Pietro Lio
DRL
91
30
0
18 Jun 2020
DrNAS: Dirichlet Neural Architecture Search
Xiangning Chen
Ruochen Wang
Minhao Cheng
Xiaocheng Tang
Cho-Jui Hsieh
OOD
107
103
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
114
41
0
18 Jun 2020
On the Variational Posterior of Dirichlet Process Deep Latent Gaussian Mixture Models
Amine Echraibi
Joachim Flocon-Cholet
Stéphane Gosselin
Sandrine Vaton
BDL
31
4
0
16 Jun 2020
PAC-Bayesian Generalization Bounds for MultiLayer Perceptrons
Xinjie Lan
Xin Guo
Kenneth Barner
47
3
0
16 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
102
42
0
15 Jun 2020
Hindsight Expectation Maximization for Goal-conditioned Reinforcement Learning
Yunhao Tang
A. Kucukelbir
OffRL
68
16
0
13 Jun 2020
Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor Projections
Csaba Tóth
Patric Bonnier
Harald Oberhauser
AI4TS
87
14
0
12 Jun 2020
Query Training: Learning a Worse Model to Infer Better Marginals in Undirected Graphical Models with Hidden Variables
Miguel Lázaro-Gredilla
Wolfgang Lehrach
Nishad Gothoskar
Guangyao Zhou
Antoine Dedieu
Dileep George
TPM
57
1
0
11 Jun 2020
Conditional Sampling with Monotone GANs: from Generative Models to Likelihood-Free Inference
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
OT
GAN
109
24
0
11 Jun 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
Wat zei je? Detecting Out-of-Distribution Translations with Variational Transformers
Tim Z. Xiao
Aidan Gomez
Y. Gal
UQLM
92
35
0
08 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
92
10
0
08 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Improving Inference for Neural Image Compression
Yibo Yang
Robert Bamler
Stephan Mandt
97
123
0
07 Jun 2020
Previous
1
2
3
...
25
26
27
...
35
36
37
Next