ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Building Bayesian Neural Networks with Blocks: On Structure,
  Interpretability and Uncertainty
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCVBDL
85
4
0
10 Jun 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
143
117
0
08 Jun 2018
Using Social Network Information in Bayesian Truth Discovery
Using Social Network Information in Bayesian Truth Discovery
Jielong Yang
Junshan Wang
Wee Peng Tay
35
9
0
08 Jun 2018
Stein Variational Gradient Descent Without Gradient
Stein Variational Gradient Descent Without Gradient
J. Han
Qiang Liu
92
45
0
07 Jun 2018
Scalable Multi-Class Bayesian Support Vector Machines for Structured and
  Unstructured Data
Scalable Multi-Class Bayesian Support Vector Machines for Structured and Unstructured Data
Martin Wistuba
Ambrish Rawat
BDL
52
2
0
07 Jun 2018
Segment-Based Credit Scoring Using Latent Clusters in the Variational
  Autoencoder
Segment-Based Credit Scoring Using Latent Clusters in the Variational Autoencoder
R. A. Mancisidor
Michael C. Kampffmeyer
K. Aas
Robert Jenssen
DRL
43
3
0
07 Jun 2018
Gaussian Mixture Reduction for Time-Constrained Approximate Inference in
  Hybrid Bayesian Networks
Gaussian Mixture Reduction for Time-Constrained Approximate Inference in Hybrid Bayesian Networks
C. Park
Kathryn B. Laskey
Paulo C. G. Costa
Shou Matsumoto
BDL
37
2
0
06 Jun 2018
Boosting Black Box Variational Inference
Boosting Black Box Variational Inference
Francesco Locatello
Gideon Dresdner
Rajiv Khanna
Isabel Valera
Gunnar Rätsch
81
32
0
06 Jun 2018
Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference
Cycle-Consistent Adversarial Learning as Approximate Bayesian Inference
Louis C. Tiao
Edwin V. Bonilla
F. Ramos
BDLOOD
63
7
0
05 Jun 2018
Cyberattack Detection using Deep Generative Models with Variational
  Inference
Cyberattack Detection using Deep Generative Models with Variational Inference
S. Chandy
A. Rasekh
Zachary A. Barker
M. Shafiee
AAML
51
26
0
31 May 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDLDRL
111
42
0
29 May 2018
Video Anomaly Detection and Localization via Gaussian Mixture Fully
  Convolutional Variational Autoencoder
Video Anomaly Detection and Localization via Gaussian Mixture Fully Convolutional Variational Autoencoder
Yaxiang Fan
G. Wen
Deren Li
S. Qiu
M. Levine
DRL
68
213
0
29 May 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
89
128
0
28 May 2018
A Stochastic Decoder for Neural Machine Translation
A Stochastic Decoder for Neural Machine Translation
P. Schulz
Wilker Aziz
Trevor Cohn
BDL
79
29
0
28 May 2018
Bayesian Deep Net GLM and GLMM
Bayesian Deep Net GLM and GLMM
Minh-Ngoc Tran
Nghia Nguyen
David J. Nott
Robert Kohn
BDL
139
75
0
25 May 2018
Accurate Computation of Marginal Data Densities Using Variational Bayes
Accurate Computation of Marginal Data Densities Using Variational Bayes
G. Hajargasht
T. Wo'zniak
58
8
0
25 May 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
81
10
0
23 May 2018
Bayesian posterior approximation via greedy particle optimization
Bayesian posterior approximation via greedy particle optimization
Futoshi Futami
Zhenghang Cui
Issei Sato
Masashi Sugiyama
78
22
0
21 May 2018
Learning 3D Shape Completion under Weak Supervision
Learning 3D Shape Completion under Weak Supervision
David Stutz
Andreas Geiger
3DPCSSL
101
106
0
18 May 2018
A Forest Mixture Bound for Block-Free Parallel Inference
A Forest Mixture Bound for Block-Free Parallel Inference
Neal Lawton
Aram Galstyan
Greg Ver Steeg
39
0
0
17 May 2018
Consistency of Variational Bayes Inference for Estimation and Model
  Selection in Mixtures
Consistency of Variational Bayes Inference for Estimation and Model Selection in Mixtures
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
122
52
0
14 May 2018
Replicating Active Appearance Model by Generator Network
Replicating Active Appearance Model by Generator Network
Tian Han
Jiawen Wu
Ying Nian Wu
CVBM
24
2
0
14 May 2018
Robust and Scalable Models of Microbiome Dynamics
Robust and Scalable Models of Microbiome Dynamics
T. Gibson
Georg Gerber
102
37
0
11 May 2018
Exploration by Distributional Reinforcement Learning
Exploration by Distributional Reinforcement Learning
Yunhao Tang
Shipra Agrawal
OOD
86
31
0
04 May 2018
QuaSE: Accurate Text Style Transfer under Quantifiable Guidance
QuaSE: Accurate Text Style Transfer under Quantifiable Guidance
Yi Liao
Lidong Bing
Piji Li
Shuming Shi
Wai Lam
Tong Zhang
BDL
108
31
0
19 Apr 2018
Deep Probabilistic Programming Languages: A Qualitative Study
Deep Probabilistic Programming Languages: A Qualitative Study
Guillaume Baudart
Martin Hirzel
Louis Mandel
UQCVTPM
25
8
0
17 Apr 2018
Copula Variational Bayes inference via information geometry
Copula Variational Bayes inference via information geometry
Viet-Hung Tran
48
6
0
29 Mar 2018
Pseudo-marginal Bayesian inference for supervised Gaussian process
  latent variable models
Pseudo-marginal Bayesian inference for supervised Gaussian process latent variable models
Charles W. L. Gadd
S. Wade
A. Shah
D. Grammatopoulos
BDLGP
25
3
0
28 Mar 2018
Graphite: Iterative Generative Modeling of Graphs
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
120
303
0
28 Mar 2018
Beyond black-boxes in Bayesian inverse problems and model validation:
  applications in solid mechanics of elastography
Beyond black-boxes in Bayesian inverse problems and model validation: applications in solid mechanics of elastography
L. Bruder
P. Koutsourelakis
MedImAI4CE
42
9
0
02 Mar 2018
Approximate Inference for Constructing Astronomical Catalogs from Images
Approximate Inference for Constructing Astronomical Catalogs from Images
Jeffrey Regier
Andrew C. Miller
D. Schlegel
Ryan P. Adams
Jon D. McAuliffe
Google Brain
36
14
0
28 Feb 2018
Fast Maximum Likelihood estimation via Equilibrium Expectation for Large
  Network Data
Fast Maximum Likelihood estimation via Equilibrium Expectation for Large Network Data
M. Byshkin
A. Stivala
Antonietta Mira
G. Robins
Alessandro Lomi
43
28
0
28 Feb 2018
Dimension-free Information Concentration via Exp-Concavity
Dimension-free Information Concentration via Exp-Concavity
Ya-Ping Hsieh
Volkan Cevher
36
1
0
26 Feb 2018
Conditionally Independent Multiresolution Gaussian Processes
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
73
1
0
25 Feb 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
123
272
0
23 Feb 2018
Variational Autoencoders for Collaborative Filtering
Variational Autoencoders for Collaborative Filtering
Dawen Liang
Rahul G. Krishnan
Matthew D. Hoffman
Tony Jebara
BDL
202
1,248
0
16 Feb 2018
Leveraging the Exact Likelihood of Deep Latent Variable Models
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei
J. Frellsen
DRL
93
67
0
13 Feb 2018
Augment and Reduce: Stochastic Inference for Large Categorical
  Distributions
Augment and Reduce: Stochastic Inference for Large Categorical Distributions
Francisco J. R. Ruiz
Michalis K. Titsias
Adji Bousso Dieng
David M. Blei
BDL
124
22
0
12 Feb 2018
A Generative Model for Dynamic Networks with Applications
A Generative Model for Dynamic Networks with Applications
Shubham Gupta
Gaurav Sharma
Ambedkar Dukkipati
158
13
0
11 Feb 2018
Black-box Variational Inference for Stochastic Differential Equations
Black-box Variational Inference for Stochastic Differential Equations
Tom Ryder
Andrew Golightly
A. Mcgough
D. Prangle
91
58
0
09 Feb 2018
Thompson Sampling for Dynamic Pricing
Thompson Sampling for Dynamic Pricing
Ravi Ganti
Mátyás A. Sustik
Quoc-Huy Tran
Brian Seaman
28
16
0
08 Feb 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDLDRL
172
243
0
07 Feb 2018
Yes, but Did It Work?: Evaluating Variational Inference
Yes, but Did It Work?: Evaluating Variational Inference
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
86
137
0
07 Feb 2018
An Instability in Variational Inference for Topic Models
An Instability in Variational Inference for Topic Models
Behrooz Ghorbani
H. Javadi
Andrea Montanari
74
33
0
02 Feb 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
106
123
0
31 Jan 2018
Cataloging the Visible Universe through Bayesian Inference at Petascale
Cataloging the Visible Universe through Bayesian Inference at Petascale
Jeffrey Regier
K. Pamnany
Keno Fischer
A. Noack
Maximilian Lam
...
Ryan Giordano
D. Schlegel
Jon D. McAuliffe
R. Thomas
P. Prabhat
60
16
0
31 Jan 2018
Nonparametric Bayesian volatility estimation
Nonparametric Bayesian volatility estimation
S. Gugushvili
Frank van der Meulen
Moritz Schauer
Peter Spreij
56
6
0
30 Jan 2018
Gaussian variational approximation for high-dimensional state space
  models
Gaussian variational approximation for high-dimensional state space models
M. Quiroz
David J. Nott
Robert Kohn
112
40
0
24 Jan 2018
Estimating Heterogeneous Consumer Preferences for Restaurants and Travel
  Time Using Mobile Location Data
Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data
Susan Athey
David M. Blei
Rob Donnelly
Francisco J. R. Ruiz
Tobias Schmidt
43
66
0
22 Jan 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate
  Modeling and Uncertainty Quantification
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCVBDL
115
649
0
21 Jan 2018
Previous
123...34353637
Next