ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXivPDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,813 papers shown
Title
Identifying Causal Direction via Variational Bayesian Compression
Identifying Causal Direction via Variational Bayesian Compression
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
CML
34
0
0
12 May 2025
Combining Bayesian Inference and Reinforcement Learning for Agent Decision Making: A Review
Combining Bayesian Inference and Reinforcement Learning for Agent Decision Making: A Review
Chengmin Zhou
Ville Kyrki
P. Fränti
Laura Ruotsalainen
BDL
AI4CE
42
0
0
12 May 2025
Taming OOD Actions for Offline Reinforcement Learning: An Advantage-Based Approach
Taming OOD Actions for Offline Reinforcement Learning: An Advantage-Based Approach
Xuyang Chen
Keyu Yan
Lin Zhao
OffRL
51
0
0
08 May 2025
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Variational Formulation of the Particle Flow Particle Filter
Variational Formulation of the Particle Flow Particle Filter
Yinzhuang Yi
Jorge Cortés
Nikolay A. Atanasov
36
0
0
06 May 2025
Latent Adaptive Planner for Dynamic Manipulation
Latent Adaptive Planner for Dynamic Manipulation
Donghun Noh
Deqian Kong
Minglu Zhao
Andrew Lizarraga
Jianwen Xie
Ying Nian Wu
Dennis W. Hong
115
0
0
06 May 2025
Bayesian Robust Aggregation for Federated Learning
Bayesian Robust Aggregation for Federated Learning
Aleksandr Karakulev
Usama Zafar
Salman Toor
Prashant Singh
FedML
33
0
0
05 May 2025
Bayesian Optimization-based Tire Parameter and Uncertainty Estimation for Real-World Data
Bayesian Optimization-based Tire Parameter and Uncertainty Estimation for Real-World Data
Sven Goblirsch
Benedikt Ruhland
Johannes Betz
Markus Lienkamp
32
0
0
29 Apr 2025
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Evolution of Gaussians in the Hellinger-Kantorovich-Boltzmann gradient flow
Matthias Liero
Alexander Mielke
Oliver Tse
Jia Jie Zhu
29
0
0
29 Apr 2025
Factor Analysis with Correlated Topic Model for Multi-Modal Data
Factor Analysis with Correlated Topic Model for Multi-Modal Data
Małgorzata Łazęcka
Ewa Szczurek
23
0
0
26 Apr 2025
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
Uncertainty quantification of neural network models of evolving processes via Langevin sampling
C. Safta
Reese E. Jones
Ravi G. Patel
Raelynn Wonnacot
Dan S. Bolintineanu
Craig M. Hamel
S. Kramer
BDL
36
0
0
21 Apr 2025
Segmentation with Noisy Labels via Spatially Correlated Distributions
Segmentation with Noisy Labels via Spatially Correlated Distributions
Ryu Tadokoro
Tsukasa Takagi
Shin-ichi Maeda
24
0
0
21 Apr 2025
Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Jiadong Lou
Bingqing Liu
Yuanheng Xiong
Xiaodong Zhang
Xu Yuan
21
0
0
18 Apr 2025
An Image is Worth $K$ Topics: A Visual Structural Topic Model with Pretrained Image Embeddings
An Image is Worth KKK Topics: A Visual Structural Topic Model with Pretrained Image Embeddings
Matías Piqueras
Alexandra Segerberg
Matteo Magnani
Måns Magnusson
Nataša Sladoje
37
0
0
14 Apr 2025
Ensemble-Enhanced Graph Autoencoder with GAT and Transformer-Based Encoders for Robust Fault Diagnosis
Ensemble-Enhanced Graph Autoencoder with GAT and Transformer-Based Encoders for Robust Fault Diagnosis
Moirangthem Tiken Singh
AI4CE
34
1
0
13 Apr 2025
Stacking Variational Bayesian Monte Carlo
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
42
0
0
07 Apr 2025
PRISM: Probabilistic Representation for Integrated Shape Modeling and Generation
PRISM: Probabilistic Representation for Integrated Shape Modeling and Generation
Lei Cheng
Mahdi Saleh
Qing Cheng
Lu Sang
Hongli Xu
Daniel Cremers
F. Tombari
23
0
0
06 Apr 2025
Variational Self-Supervised Learning
Variational Self-Supervised Learning
Mehmet Can Yavuz
Berrin Yanikoglu
SSL
102
0
0
06 Apr 2025
Stochastic Variational Inference with Tuneable Stochastic Annealing
Stochastic Variational Inference with Tuneable Stochastic Annealing
John Paisley
G. Fazelnia
Brian Barr
24
0
0
04 Apr 2025
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Taming High-Dimensional Dynamics: Learning Optimal Projections onto Spectral Submanifolds
Hugo Buurmeijer
Luis A. Pabon
J. I. Alora
Roshan S. Kaundinya
George Haller
Marco Pavone
31
0
0
04 Apr 2025
Multi-fidelity Parameter Estimation Using Conditional Diffusion Models
Multi-fidelity Parameter Estimation Using Conditional Diffusion Models
Caroline Tatsuoka
Minglei Yang
Dongbin Xiu
Guannan Zhang
DiffM
41
1
0
02 Apr 2025
Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
Probabilistic Curriculum Learning for Goal-Based Reinforcement Learning
Llewyn Salt
Marcus Gallagher
31
1
0
02 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
56
0
0
02 Apr 2025
Locally Orderless Images for Optimization in Differentiable Rendering
Locally Orderless Images for Optimization in Differentiable Rendering
Ishit Mehta
Manmohan Chandraker
Ravi Ramamoorthi
29
0
0
27 Mar 2025
Learning to chain-of-thought with Jensen's evidence lower bound
Learning to chain-of-thought with Jensen's evidence lower bound
Yunhao Tang
Sid Wang
Rémi Munos
BDL
OffRL
LRM
50
0
0
25 Mar 2025
FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
Dong Zhao
Jinlong Li
Shuang Wang
Mengyao Wu
Qi Zang
N. Sebe
Zhun Zhong
141
0
0
23 Mar 2025
Evaluating Negative Sampling Approaches for Neural Topic Models
Evaluating Negative Sampling Approaches for Neural Topic Models
Suman Adhya
Avishek Lahiri
Debarshi Kumar Sanyal
Partha Pratim Das
BDL
45
0
0
23 Mar 2025
Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference
Quantification of Uncertainties in Probabilistic Deep Neural Network by Implementing Boosting of Variational Inference
Pavia Bera
Sanjukta Bhanja
UQCV
BDL
80
0
0
18 Mar 2025
Uncertainty Quantification for Data-Driven Machine Learning Models in Nuclear Engineering Applications: Where We Are and What Do We Need?
Uncertainty Quantification for Data-Driven Machine Learning Models in Nuclear Engineering Applications: Where We Are and What Do We Need?
Xu Wu
L. Moloko
P. Bokov
Gregory K. Delipei
Joshua Kaizer
K. Ivanov
AI4CE
44
0
0
16 Mar 2025
Massively Parallel Expectation Maximization For Approximate Posteriors
Thomas Heap
Sam Bowyer
Laurence Aitchison
44
0
0
11 Mar 2025
Vairiational Stochastic Games
Zhiyu Zhao
Haifeng Zhang
55
0
0
08 Mar 2025
Mixed Likelihood Variational Gaussian Processes
Kaiwen Wu
Craig Sanders
Benjamin Letham
Phillip Guan
77
0
0
06 Mar 2025
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
57
0
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
45
0
0
01 Mar 2025
Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Bayesian Active Learning for Multi-Criteria Comparative Judgement in Educational Assessment
Andy Gray
Alma A. M. Rahat
Tom Crick
Stephen Lindsay
ELM
37
1
0
01 Mar 2025
Variational Bayesian Pseudo-Coreset
Variational Bayesian Pseudo-Coreset
Hyungi Lee
S. Lee
Juho Lee
BDL
36
0
0
28 Feb 2025
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Yeonjun In
Kanghoon Yoon
Sukwon Yun
Kibum Kim
Sungchul Kim
Chanyoung Park
OOD
NoLa
76
0
0
27 Feb 2025
Transfer Learning in Latent Contextual Bandits with Covariate Shift Through Causal Transportability
Transfer Learning in Latent Contextual Bandits with Covariate Shift Through Causal Transportability
Mingwei Deng
Ville Kyrki
Dominik Baumann
41
0
0
27 Feb 2025
Actively Inferring Optimal Measurement Sequences
Actively Inferring Optimal Measurement Sequences
Catherine F. Higham
Paul Henderson
R. Murray-Smith
DRL
59
0
0
25 Feb 2025
Federated Variational Inference for Bayesian Mixture Models
Federated Variational Inference for Bayesian Mixture Models
Jackie Rao
Francesca L. Crowe
Tom Marshall
S. Richardson
Paul D. W. Kirk
FedML
95
0
0
18 Feb 2025
In-Context Parametric Inference: Point or Distribution Estimators?
In-Context Parametric Inference: Point or Distribution Estimators?
Sarthak Mittal
Yoshua Bengio
Nikolay Malkin
Guillaume Lajoie
72
0
0
17 Feb 2025
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Christophe Vauthier
Quentin Mérigot
Anna Korba
37
0
0
10 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
62
1
0
10 Feb 2025
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
Chengrui Li
Yunmiao Wang
Yule Wang
Weihan Li
Dieter Jaeger
Anqi Wu
CoGe
DRL
74
0
0
04 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
87
2
0
04 Feb 2025
Learning Hyperparameters via a Data-Emphasized Variational Objective
Learning Hyperparameters via a Data-Emphasized Variational Objective
Ethan Harvey
Mikhail Petrov
Michael C. Hughes
63
0
0
03 Feb 2025
Scalable Language Models with Posterior Inference of Latent Thought Vectors
Scalable Language Models with Posterior Inference of Latent Thought Vectors
Deqian Kong
Minglu Zhao
Dehong Xu
Bo Pang
Shu Wang
...
Zhangzhang Si
Chuan Li
Jianwen Xie
Sirui Xie
Ying Nian Wu
VLM
LRM
BDL
81
5
0
03 Feb 2025
HuViDPO:Enhancing Video Generation through Direct Preference Optimization for Human-Centric Alignment
HuViDPO:Enhancing Video Generation through Direct Preference Optimization for Human-Centric Alignment
Lifan Jiang
Boxi Wu
Jiahui Zhang
Xiaotong Guan
Shuang Chen
VGen
61
1
0
02 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
58
1
0
28 Jan 2025
Robust and highly scalable estimation of directional couplings from time-shifted signals
Robust and highly scalable estimation of directional couplings from time-shifted signals
Luca Ambrogioni
Louis Rouillard
Demian Wassermann
54
0
0
28 Jan 2025
1234...353637
Next