ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXivPDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,814 papers shown
Title
On Divergence Measures for Training GFlowNets
On Divergence Measures for Training GFlowNets
Tiago da Silva
Eliezer de Souza da Silva
Diego Mesquita
BDL
29
1
0
12 Oct 2024
Deterministic Fokker-Planck Transport -- With Applications to Sampling,
  Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
Deterministic Fokker-Planck Transport -- With Applications to Sampling, Variational Inference, Kernel Mean Embeddings & Sequential Monte Carlo
Ilja Klebanov
OT
24
0
0
11 Oct 2024
Hierarchical Uncertainty Estimation for Learning-based Registration in Neuroimaging
Hierarchical Uncertainty Estimation for Learning-based Registration in Neuroimaging
Xiaoling Hu
Karthik Gopinath
Peirong Liu
Malte Hoffmann
Koen van Leemput
O. Puonti
J. Iglesias
OOD
UQCV
43
0
0
11 Oct 2024
Physics and Deep Learning in Computational Wave Imaging
Physics and Deep Learning in Computational Wave Imaging
Youzuo Lin
Shihang Feng
J. Theiler
Yinpeng Chen
Umberto Villa
Jing Rao
John Greenhall
Cristian Pantea
M. Anastasio
B. Wohlberg
34
0
0
10 Oct 2024
Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty
  Design -- A Perspective
Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty Design -- A Perspective
Yuzhi Xu
Haowei Ni
Qinhui Gao
Chia-Hua Chang
Yanran Huo
...
Yike Zhang
Radu Grovu
Min He
John Z. H. Zhang
Yuanqing Wang
AI4CE
29
0
0
08 Oct 2024
Variational Bayes Gaussian Splatting
Variational Bayes Gaussian Splatting
Toon Van de Maele
Ozan Çatal
Alexander Tschantz
Christopher L. Buckley
Tim Verbelen
3DGS
18
0
0
04 Oct 2024
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Marcelo Hartmann
Arto Klami
DRL
41
0
0
03 Oct 2024
Thermodynamic Bayesian Inference
Thermodynamic Bayesian Inference
Maxwell Aifer
Samuel Duffield
Kaelan Donatella
Denis Melanson
Phoebe Klett
Zach Belateche
Gavin Crooks
Antonio J. Martinez
Patrick J. Coles
36
3
0
02 Oct 2024
An uncertainty-aware Digital Shadow for underground multimodal CO2
  storage monitoring
An uncertainty-aware Digital Shadow for underground multimodal CO2 storage monitoring
A. Gahlot
Rafael Orozco
Ziyi Yin
Felix J. Herrmann
31
4
0
02 Oct 2024
Maximum Ideal Likelihood Estimator: An New Estimation and Inference
  Framework for Latent Variable Models
Maximum Ideal Likelihood Estimator: An New Estimation and Inference Framework for Latent Variable Models
Yizhou Cai
Ting Fung Ma
24
0
0
02 Oct 2024
Bayes-CATSI: A variational Bayesian deep learning framework for medical
  time series data imputation
Bayes-CATSI: A variational Bayesian deep learning framework for medical time series data imputation
Omkar Kulkarni
Rohitash Chandra
CML
AI4TS
BDL
32
0
0
01 Oct 2024
Possible principles for aligned structure learning agents
Possible principles for aligned structure learning agents
Lancelot Da Costa
Tomáš Gavenčiak
David Hyland
Mandana Samiei
Cristian Dragos-Manta
Candice Pattisapu
Adeel Razi
Karl J. Friston
31
1
0
30 Sep 2024
Simulation-based inference with the Python Package sbijax
Simulation-based inference with the Python Package sbijax
Simon Dirmeier
S. Ulzega
Antonietta Mira
Carlo Albert
38
1
0
28 Sep 2024
Entropy, concentration, and learning: a statistical mechanics primer
Entropy, concentration, and learning: a statistical mechanics primer
Akshay Balsubramani
AI4CE
32
1
0
27 Sep 2024
Adaptive Stream Processing on Edge Devices through Active Inference
Adaptive Stream Processing on Edge Devices through Active Inference
Boris Sedlak
Víctor Casamayor Pujol
Andrea Morichetta
Praveen Kumar Donta
Schahram Dustdar
28
2
0
26 Sep 2024
Decomposable Transformer Point Processes
Decomposable Transformer Point Processes
Aristeidis Panos
24
1
0
26 Sep 2024
Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
Zeyue Zhang
Xiaoling Lu
Feng Zhou
11
0
0
26 Sep 2024
Factor pre-training in Bayesian multivariate logistic models
Factor pre-training in Bayesian multivariate logistic models
Lorenzo Mauri
David B. Dunson
20
0
0
26 Sep 2024
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models
Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models
A. Popov
Alperen Degirmenci
David Wehr
Shashank Hegde
Ryan Oldja
...
David Nistér
Urs Muller
Ruchi Bhargava
Stan Birchfield
Nikolai Smolyanskiy
77
9
0
25 Sep 2024
VARADE: a Variational-based AutoRegressive model for Anomaly Detection
  on the Edge
VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge
Alessio Mascolini
Sebastiano Gaiardelli
Francesco Ponzio
Nicola Dall’Ora
Enrico Macii
S. Vinco
S. D. Cataldo
Franco Fummi
DRL
26
0
0
23 Sep 2024
Skew-symmetric approximations of posterior distributions
Skew-symmetric approximations of posterior distributions
Francesco Pozza
Daniele Durante
Botond Szabó
39
2
0
21 Sep 2024
Stochastic mirror descent for nonparametric adaptive importance sampling
Stochastic mirror descent for nonparametric adaptive importance sampling
Pascal Bianchi
B. Delyon
Victor Priser
François Portier
34
2
0
20 Sep 2024
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Linjie Lyu
Ayush Tewari
Marc Habermann
Shunsuke Saito
Michael Zollhöfer
Thomas Leimkühler
Christian Theobalt
UQCV
40
1
0
19 Sep 2024
Amortized Variational Inference for Deep Gaussian Processes
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
26
0
0
18 Sep 2024
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic
  process by leveraging Hamilton-Jacobi PDEs and score-based generative models
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
40
2
0
15 Sep 2024
Improved Finite-Particle Convergence Rates for Stein Variational
  Gradient Descent
Improved Finite-Particle Convergence Rates for Stein Variational Gradient Descent
Krishnakumar Balasubramanian
Sayan Banerjee
Promit Ghosal
40
2
0
13 Sep 2024
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Portfolio Stress Testing and Value at Risk (VaR) Incorporating Current
  Market Conditions
Portfolio Stress Testing and Value at Risk (VaR) Incorporating Current Market Conditions
Krishan Mohan Nagpal
24
0
0
12 Sep 2024
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
70
0
0
10 Sep 2024
Predicting Critical Heat Flux with Uncertainty Quantification and Domain Generalization Using Conditional Variational Autoencoders and Deep Neural Networks
Predicting Critical Heat Flux with Uncertainty Quantification and Domain Generalization Using Conditional Variational Autoencoders and Deep Neural Networks
Farah Alsafadi
Aidan Furlong
Xu Wu
UQCV
AI4CE
39
3
0
09 Sep 2024
Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for
  Autonomous Intrusion Detection
Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for Autonomous Intrusion Detection
Li Yang
Abdallah Shami
22
2
0
05 Sep 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
31
2
0
29 Aug 2024
Constrained Diffusion Models via Dual Training
Constrained Diffusion Models via Dual Training
Shervin Khalafi
Dongsheng Ding
Alejandro Ribeiro
42
3
0
27 Aug 2024
Decentralised Variational Inference Frameworks for Multi-object Tracking
  on Sensor Network
Decentralised Variational Inference Frameworks for Multi-object Tracking on Sensor Network
Qing Li
Runze Gan
S. Godsill
21
0
0
24 Aug 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
67
3
0
23 Aug 2024
Variance reduction of diffusion model's gradients with Taylor
  approximation-based control variate
Variance reduction of diffusion model's gradients with Taylor approximation-based control variate
Paul Jeha
Will Grathwohl
Michael Riis Andersen
Carl Henrik Ek
J. Frellsen
DiffM
29
1
0
22 Aug 2024
Personalizing Reinforcement Learning from Human Feedback with
  Variational Preference Learning
Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning
S. Poddar
Yanming Wan
Hamish Ivison
Abhishek Gupta
Natasha Jaques
34
35
0
19 Aug 2024
Modelling the Distribution of Human Motion for Sign Language Assessment
Modelling the Distribution of Human Motion for Sign Language Assessment
Oliver Cory
Ozge Mercanoglu Sincan
M. Vowels
A. Battisti
F. Holzknecht
Katja Tissi
Sandra Sidler-Miserez
Tobias Haug
Sarah Ebling
Richard Bowden
29
1
0
19 Aug 2024
Enhanced BPINN Training Convergence in Solving General and Multi-scale Elliptic PDEs with Noise
Enhanced BPINN Training Convergence in Solving General and Multi-scale Elliptic PDEs with Noise
Yilong Hou
Xi’an Li
Jinran Wu
You-Gan Wang
69
1
0
18 Aug 2024
Learning to Explore for Stochastic Gradient MCMC
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
48
1
0
17 Aug 2024
Unsupervised Variational Translator for Bridging Image Restoration and
  High-Level Vision Tasks
Unsupervised Variational Translator for Bridging Image Restoration and High-Level Vision Tasks
Jiawei Wu
Zhi Jin
36
0
0
15 Aug 2024
Fast Bayesian inference in a class of sparse linear mixed effects models
Fast Bayesian inference in a class of sparse linear mixed effects models
M. Spyropoulou
J. Hopker
J. E. Griffin
18
0
0
14 Aug 2024
Quantification of total uncertainty in the physics-informed
  reconstruction of CVSim-6 physiology
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
31
3
0
13 Aug 2024
Value of Information and Reward Specification in Active Inference and
  POMDPs
Value of Information and Reward Specification in Active Inference and POMDPs
Ran Wei
54
3
0
13 Aug 2024
Variational Bayesian Phylogenetic Inference with Semi-implicit Branch
  Length Distributions
Variational Bayesian Phylogenetic Inference with Semi-implicit Branch Length Distributions
Tianyu Xie
Frederick A. Matsen IV
M. Suchard
Cheng Zhang
27
1
0
09 Aug 2024
Re-ENACT: Reinforcement Learning for Emotional Speech Generation using
  Actor-Critic Strategy
Re-ENACT: Reinforcement Learning for Emotional Speech Generation using Actor-Critic Strategy
Ravi Shankar
Archana Venkataraman
31
0
0
04 Aug 2024
Alpha-VI DeepONet: A prior-robust variational Bayesian approach for
  enhancing DeepONets with uncertainty quantification
Alpha-VI DeepONet: A prior-robust variational Bayesian approach for enhancing DeepONets with uncertainty quantification
Soban Nasir Lone
Subhayan De
R. Nayek
BDL
37
1
0
01 Aug 2024
Weak neural variational inference for solving Bayesian inverse problems
  without forward models: applications in elastography
Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography
Vincent C. Scholz
Yaohua Zang
P. Koutsourelakis
41
3
0
30 Jul 2024
Causal effect estimation under network interference with mean-field
  methods
Causal effect estimation under network interference with mean-field methods
Sohom Bhattacharya
Subhabrata Sen
CML
37
1
0
28 Jul 2024
Variational Inference Using Material Point Method
Variational Inference Using Material Point Method
Yongchao Huang
28
0
0
26 Jul 2024
Previous
123456...353637
Next