ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.14299
19
5

Accounting for missing actors in interaction network inference from abundance data

28 July 2020
Raphaelle Momal
Stephane S. Robin
Christophe Ambroise
    CML
ArXivPDFHTML
Abstract

Network inference aims at unraveling the dependency structure relating jointly observed variables. Graphical models provide a general framework to distinguish between marginal and conditional dependency. Unobserved variables (missing actors) may induce apparent conditional dependencies.In the context of count data, we introduce a mixture of Poisson log-normal distributions with tree-shaped graphical models, to recover the dependency structure, including missing actors. We design a variational EM algorithm and assess its performance on synthetic data. We demonstrate the ability of our approach to recover environmental drivers on two ecological datasets. The corresponding R package is available from github.com/Rmomal/nestor.

View on arXiv
Comments on this paper