ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.14634
21
10

Approximation Based Variance Reduction for Reparameterization Gradients

29 July 2020
Tomas Geffner
Justin Domke
    BDL
    DRL
ArXivPDFHTML
Abstract

Flexible variational distributions improve variational inference but are harder to optimize. In this work we present a control variate that is applicable for any reparameterizable distribution with known mean and covariance matrix, e.g. Gaussians with any covariance structure. The control variate is based on a quadratic approximation of the model, and its parameters are set using a double-descent scheme by minimizing the gradient estimator's variance. We empirically show that this control variate leads to large improvements in gradient variance and optimization convergence for inference with non-factorized variational distributions.

View on arXiv
Comments on this paper