ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
66
3
0
14 Sep 2019
Adversarial $α$-divergence Minimization for Bayesian Approximate
  Inference
Adversarial ααα-divergence Minimization for Bayesian Approximate Inference
Simón Rodríguez Santana
Daniel Hernández-Lobato
UQCVBDL
33
7
0
13 Sep 2019
Towards Scalable Gaussian Process Modeling
Towards Scalable Gaussian Process Modeling
Piyush Pandita
Jesper Kristensen
Liping Wang
29
3
0
25 Jul 2019
Kernel Mode Decomposition and programmable/interpretable regression
  networks
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
95
5
0
19 Jul 2019
Structured Variational Inference in Unstable Gaussian Process State
  Space Models
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
89
4
0
16 Jul 2019
Memory of Motion for Warm-starting Trajectory Optimization
Memory of Motion for Warm-starting Trajectory Optimization
Teguh Santoso Lembono
Antonio Paolillo
Emmanuel Pignat
Sylvain Calinon
82
45
0
02 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
72
34
0
22 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart
  and inverse Wishart processes
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
89
15
0
22 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
64
38
0
19 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with
  Signature Covariances
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
48
9
0
19 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
88
566
0
17 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
30
0
13 Jun 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of
  Exponential-family Approximations
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
111
71
0
07 Jun 2019
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Daniel L. Marino
Milos Manic
30
3
0
05 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual
  Estimation with an I/O Kernel
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
90
54
0
03 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCVBDL
58
3
0
31 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
48
6
0
29 May 2019
Lifelong Bayesian Optimization
Lifelong Bayesian Optimization
Yao Zhang
James Jordon
Ahmed Alaa
M. Schaar
123
11
0
29 May 2019
Recursive Estimation for Sparse Gaussian Process Regression
Recursive Estimation for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
65
33
0
28 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
49
18
0
27 May 2019
Sequential Gaussian Processes for Online Learning of Nonstationary
  Functions
Sequential Gaussian Processes for Online Learning of Nonstationary Functions
M. Zhang
Bianca Dumitrascu
Sinead Williamson
Barbara E. Engelhardt
66
8
0
24 May 2019
Learning spectrograms with convolutional spectral kernels
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
64
9
0
23 May 2019
Multi-Class Gaussian Process Classification Made Conjugate: Efficient
  Inference via Data Augmentation
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
Théo Galy-Fajou
F. Wenzel
Christian Donner
Manfred Opper
62
30
0
23 May 2019
Online Anomaly Detection with Sparse Gaussian Processes
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
Shiliang Sun
AI4TS
57
21
0
14 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
99
44
0
14 May 2019
Adaptive surrogate models for parametric studies
Adaptive surrogate models for parametric studies
J. Fuhg
43
8
0
12 May 2019
Bayesian Optimization using Deep Gaussian Processes
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
95
70
0
07 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational
  Harmonic Features
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
74
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
69
17
0
04 Apr 2019
A Machine Learning approach to Risk Minimisation in Electricity Markets
  with Coregionalized Sparse Gaussian Processes
A Machine Learning approach to Risk Minimisation in Electricity Markets with Coregionalized Sparse Gaussian Processes
Daniel Poh
Stephen J. Roberts
Martin Tegnér
19
0
0
22 Mar 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
69
231
0
19 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
75
110
0
18 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
83
240
0
14 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
Deeper Connections between Neural Networks and Gaussian Processes
  Speed-up Active Learning
Deeper Connections between Neural Networks and Gaussian Processes Speed-up Active Learning
Evgenii Tsymbalov
Sergei Makarychev
Alexander Shapeev
Maxim Panov
BDLUQCV
52
21
0
27 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCVBDL
161
32
0
15 Feb 2019
Hybrid Models with Deep and Invertible Features
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDLDRL
119
99
0
07 Feb 2019
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
William J. Wilkinson
Michael Riis Andersen
Joshua D. Reiss
D. Stowell
Arno Solin
67
5
0
31 Jan 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
77
187
0
31 Jan 2019
On Random Subsampling of Gaussian Process Regression: A Graphon-Based
  Analysis
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
K. Hayashi
Masaaki Imaizumi
Yuichi Yoshida
55
12
0
28 Jan 2019
Variational bridge constructs for approximate Gaussian process
  regression
Variational bridge constructs for approximate Gaussian process regression
W. Ward
Mauricio A. Alvarez
28
1
0
07 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
64
2
0
03 Jan 2019
Non-Factorised Variational Inference in Dynamical Systems
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
6
0
14 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCVBDL
131
124
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
91
56
0
27 Nov 2018
Mixed Likelihood Gaussian Process Latent Variable Model
Mixed Likelihood Gaussian Process Latent Variable Model
Samuel Murray
Hedvig Kjellström
18
4
0
19 Nov 2018
Infinite-Horizon Gaussian Processes
Infinite-Horizon Gaussian Processes
Arno Solin
J. Hensman
Richard Turner
65
28
0
15 Nov 2018
Large-scale Heteroscedastic Regression via Gaussian Process
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
83
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big
  Data
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
75
26
0
03 Nov 2018
Gaussian Process Conditional Density Estimation
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
161
52
0
30 Oct 2018
Previous
123...1011121389
Next