Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
66
3
0
14 Sep 2019
Adversarial
α
α
α
-divergence Minimization for Bayesian Approximate Inference
Simón Rodríguez Santana
Daniel Hernández-Lobato
UQCV
BDL
33
7
0
13 Sep 2019
Towards Scalable Gaussian Process Modeling
Piyush Pandita
Jesper Kristensen
Liping Wang
29
3
0
25 Jul 2019
Kernel Mode Decomposition and programmable/interpretable regression networks
H. Owhadi
C. Scovel
G. Yoo
95
5
0
19 Jul 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
89
4
0
16 Jul 2019
Memory of Motion for Warm-starting Trajectory Optimization
Teguh Santoso Lembono
Antonio Paolillo
Emmanuel Pignat
Sylvain Calinon
82
45
0
02 Jul 2019
Multi-task Learning for Aggregated Data using Gaussian Processes
F. Yousefi
M. Smith
Mauricio A. Alvarez
FedML
72
34
0
22 Jun 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
89
15
0
22 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
64
38
0
19 Jun 2019
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Tóth
Harald Oberhauser
48
9
0
19 Jun 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
88
566
0
17 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
30
0
13 Jun 2019
Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations
Wu Lin
Mohammad Emtiyaz Khan
Mark Schmidt
BDL
111
71
0
07 Jun 2019
Physics Enhanced Data-Driven Models with Variational Gaussian Processes
Daniel L. Marino
Milos Manic
30
3
0
05 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
90
54
0
03 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
58
3
0
31 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
48
6
0
29 May 2019
Lifelong Bayesian Optimization
Yao Zhang
James Jordon
Ahmed Alaa
M. Schaar
123
11
0
29 May 2019
Recursive Estimation for Sparse Gaussian Process Regression
Manuel Schürch
Dario Azzimonti
A. Benavoli
Marco Zaffalon
65
33
0
28 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
49
18
0
27 May 2019
Sequential Gaussian Processes for Online Learning of Nonstationary Functions
M. Zhang
Bianca Dumitrascu
Sinead Williamson
Barbara E. Engelhardt
66
8
0
24 May 2019
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
64
9
0
23 May 2019
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
Théo Galy-Fajou
F. Wenzel
Christian Donner
Manfred Opper
62
30
0
23 May 2019
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
Shiliang Sun
AI4TS
57
21
0
14 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
99
44
0
14 May 2019
Adaptive surrogate models for parametric studies
J. Fuhg
43
8
0
12 May 2019
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
95
70
0
07 May 2019
Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features
Arno Solin
Manon Kok
74
23
0
10 Apr 2019
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
69
17
0
04 Apr 2019
A Machine Learning approach to Risk Minimisation in Electricity Markets with Coregionalized Sparse Gaussian Processes
Daniel Poh
Stephen J. Roberts
Martin Tegnér
19
0
0
22 Mar 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
69
231
0
19 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
75
110
0
18 Mar 2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
83
240
0
14 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
76
155
0
08 Mar 2019
Deeper Connections between Neural Networks and Gaussian Processes Speed-up Active Learning
Evgenii Tsymbalov
Sergei Makarychev
Alexander Shapeev
Maxim Panov
BDL
UQCV
52
21
0
27 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
161
32
0
15 Feb 2019
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
119
99
0
07 Feb 2019
End-to-End Probabilistic Inference for Nonstationary Audio Analysis
William J. Wilkinson
Michael Riis Andersen
Joshua D. Reiss
D. Stowell
Arno Solin
67
5
0
31 Jan 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLL
BDL
77
187
0
31 Jan 2019
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
K. Hayashi
Masaaki Imaizumi
Yuichi Yoshida
55
12
0
28 Jan 2019
Variational bridge constructs for approximate Gaussian process regression
W. Ward
Mauricio A. Alvarez
28
1
0
07 Jan 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
64
2
0
03 Jan 2019
Non-Factorised Variational Inference in Dynamical Systems
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
6
0
14 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
131
124
0
10 Dec 2018
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
91
56
0
27 Nov 2018
Mixed Likelihood Gaussian Process Latent Variable Model
Samuel Murray
Hedvig Kjellström
18
4
0
19 Nov 2018
Infinite-Horizon Gaussian Processes
Arno Solin
J. Hensman
Richard Turner
65
28
0
15 Nov 2018
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
83
26
0
03 Nov 2018
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
Haitao Liu
Jianfei Cai
Yew-Soon Ong
Yi Wang
75
26
0
03 Nov 2018
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
161
52
0
30 Oct 2018
Previous
1
2
3
...
10
11
12
13
8
9
Next