Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 190 papers shown
Title
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
31
0
0
10 Apr 2025
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
61
0
0
02 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
54
1
0
01 Apr 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
55
2
0
13 Mar 2025
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Vidhi Lalchand
Anna-Christina Eilers
66
0
0
27 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
179
0
0
31 Dec 2024
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
41
0
0
23 Dec 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDL
GP
45
1
0
28 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
37
1
0
18 Oct 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
79
0
0
01 Jul 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
37
0
0
07 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
43
2
0
28 May 2024
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Sarah Zhao
Aditya Ravuri
V. Lalchand
Neil D. Lawrence
BDL
VLM
28
0
0
06 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
43
1
0
27 Apr 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
35
1
0
02 Apr 2024
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
P. Djuric
39
1
0
11 Mar 2024
Improving sample efficiency of high dimensional Bayesian optimization with MCMC
Zeji Yi
Yunyue Wei
Chu Xin Cheng
Kaibo He
Yanan Sui
27
5
0
05 Jan 2024
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
26
0
0
11 Oct 2023
Stochastic stiffness identification and response estimation of Timoshenko beams via physics-informed Gaussian processes
Gledson Rodrigo Tondo
Sebastian Rau
I. Kavrakov
Guido Morgenthal
35
6
0
21 Sep 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
24
1
0
11 Sep 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
19
4
0
08 Sep 2023
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
25
4
0
06 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
64
1
0
26 May 2023
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
14
1
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Natalie Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
28
2
0
25 May 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
32
5
0
11 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
11
2
0
05 Apr 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
21
5
0
09 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
25
9
0
11 Jan 2023
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
25
1
0
20 Nov 2022
ET-AL: Entropy-Targeted Active Learning for Bias Mitigation in Materials Data
Hengrui Zhang
Wei Chen
J. Rondinelli
Wei Chen
AI4CE
19
17
0
15 Nov 2022
Safe and Adaptive Decision-Making for Optimization of Safety-Critical Systems: The ARTEO Algorithm
Buse Sibel Korkmaz
Marta Zagórowska
Mehmet Mercangöz
27
2
0
10 Nov 2022
Locally Smoothed Gaussian Process Regression
Davit Gogolashvili
B. Kozyrskiy
Maurizio Filippone
30
8
0
18 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
59
12
0
06 Oct 2022
Physically Meaningful Uncertainty Quantification in Probabilistic Wind Turbine Power Curve Models as a Damage Sensitive Feature
J. H. Mclean
Matthew R. Jones
Brandon J. O'Connell
Eoghan Maguire
T. Rogers
21
6
0
30 Sep 2022
A Nonparametric Contextual Bandit with Arm-level Eligibility Control for Customer Service Routing
Ruofeng Wen
Wenjun Zeng
Yi Liu
24
0
0
08 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
15
0
0
04 Sep 2022
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
23
0
0
24 Aug 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
37
6
0
16 Jul 2022
Low Emission Building Control with Zero-Shot Reinforcement Learning
Scott Jeen
Alessandro Abate
Jonathan M. Cullen
AI4CE
19
5
0
28 Jun 2022
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
24
4
0
06 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
1
2
3
4
Next