ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
From Local Interactions to Global Operators: Scalable Gaussian Process Operator for Physical Systems
Sawan Kumar
Tapas Tripura
R. Nayek
S. Chakraborty
24
0
0
18 Jun 2025
Accurate and Uncertainty-Aware Multi-Task Prediction of HEA Properties Using Prior-Guided Deep Gaussian Processes
Accurate and Uncertainty-Aware Multi-Task Prediction of HEA Properties Using Prior-Guided Deep Gaussian Processes
Sk Md Ahnaf Akif Alvi
Mrinalini Mulukutla
Nicolas Flores
Danial Khatamsaz
Jan Janssen
Danny Perez
D. Allaire
V. Attari
Raymundo Arroyave
AI4CE
15
0
0
13 Jun 2025
Physically-informed change-point kernels for structural dynamics
Physically-informed change-point kernels for structural dynamics
D. J. Pitchforth
M. R. Jones
S. Gibson
E. Cross
27
0
0
13 Jun 2025
Scalable Gaussian Processes with Latent Kronecker Structure
Scalable Gaussian Processes with Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
David Eriksson
José Miguel Hernández-Lobato
E. Bakshy
22
0
0
07 Jun 2025
On the Usage of Gaussian Process for Efficient Data Valuation
On the Usage of Gaussian Process for Efficient Data Valuation
Clément Bénesse
Patrick Mesana
Athénaïs Gautier
Sébastien Gambs
TDI
86
0
0
04 Jun 2025
STACI: Spatio-Temporal Aleatoric Conformal Inference
STACI: Spatio-Temporal Aleatoric Conformal Inference
Brandon Feng
David K. Park
Xihaier Luo
Arantxa Urdangarin
Shinjae Yoo
Brian J. Reich
29
0
0
27 May 2025
Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling
Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling
Xinxing Shi
Xiaoyu Jiang
Mauricio A. Álvarez
BDL
112
0
0
22 May 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
59
0
0
19 May 2025
Graph and Simplicial Complex Prediction Gaussian Process via the Hodgelet Representations
Graph and Simplicial Complex Prediction Gaussian Process via the Hodgelet Representations
Mathieu Alain
So Takao
Xiaowen Dong
Bastian Rieck
Emmanuel Noutahi
75
0
0
16 May 2025
Scaling Gaussian Process Regression with Full Derivative Observations
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDLGP
66
0
0
14 May 2025
Clustering with Communication: A Variational Framework for Single Cell Representation Learning
Clustering with Communication: A Variational Framework for Single Cell Representation Learning
Cong Qi
Yuxiao Chen
Jie Zhang
Wei Zhi
DRL
56
0
0
08 May 2025
Gradient-based Sample Selection for Faster Bayesian Optimization
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
89
1
0
10 Apr 2025
Adaptive sparse variational approximations for Gaussian process regression
Adaptive sparse variational approximations for Gaussian process regression
Dennis Nieman
Botond Szabó
103
0
0
04 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDLUQCV
198
0
0
02 Apr 2025
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Preconditioned Additive Gaussian Processes with Fourier Acceleration
Theresa Wagner
Tianshi Xu
Franziska Nestler
Yuanzhe Xi
Martin Stoll
87
1
0
01 Apr 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
164
0
0
24 Mar 2025
Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Sidhanth Holalkere
David S. Bindel
Silvia Sellán
Alexander Terenin
114
0
0
24 Mar 2025
Exploiting Concavity Information in Gaussian Process Contextual Bandit Optimization
Kevin Li
Eric Laber
88
0
0
13 Mar 2025
Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions
Gledson Rodrigo Tondo
I. Kavrakov
Guido Morgenthal
87
2
0
13 Mar 2025
Massively Parallel Expectation Maximization For Approximate Posteriors
Thomas Heap
Sam Bowyer
Laurence Aitchison
71
0
0
11 Mar 2025
Mixed Likelihood Variational Gaussian Processes
Kaiwen Wu
Craig Sanders
Benjamin Letham
Phillip Guan
109
0
0
06 Mar 2025
HiGP: A high-performance Python package for Gaussian Process
Hua Huang
Tianshi Xu
Yuanzhe Xi
Edmond Chow
GP
102
4
0
04 Mar 2025
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
Vidhi Lalchand
Anna-Christina Eilers
108
0
0
27 Feb 2025
Revisiting Kernel Attention with Correlated Gaussian Process Representation
Revisiting Kernel Attention with Correlated Gaussian Process Representation
Long Minh Bui
Tho Tran Huu
Duy-Tung Dinh
T. Nguyen
Trong Nghia Hoang
127
2
0
27 Feb 2025
Koopman-Equivariant Gaussian Processes
Petar Bevanda
Max Beier
Armin Lederer
A. Capone
Stefan Sosnowski
Sandra Hirche
AI4TS
110
2
0
10 Feb 2025
Decentralized Online Ensembles of Gaussian Processes for Multi-Agent Systems
Fernando Llorente
Daniel Waxman
Petar M. Djurić
76
0
0
07 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
238
0
0
20 Jan 2025
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Safe Bayesian Optimization for the Control of High-Dimensional Embodied Systems
Yunyue Wei
Zeji Yi
Hongda Li
Saraswati Soedarmadji
Yanan Sui
99
0
0
31 Dec 2024
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
406
1
0
31 Dec 2024
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
111
0
0
23 Dec 2024
Bluetooth Low Energy Dataset Using In-Phase and Quadrature Samples for
  Indoor Localization
Bluetooth Low Energy Dataset Using In-Phase and Quadrature Samples for Indoor Localization
Samuel G. Leitch
Q. Ahmed
Ben Van Herbruggen
Mathias Baert
Jaron Fontaine
E. De Poorter
A. Shahid
P. Lazaridis
71
0
0
02 Dec 2024
Self-supervised cross-modality learning for uncertainty-aware object
  detection and recognition in applications which lack pre-labelled training
  data
Self-supervised cross-modality learning for uncertainty-aware object detection and recognition in applications which lack pre-labelled training data
Irum Mehboob
Li Sun
Alireza Astegarpanah
Rustam Stolkin
UQCV
80
0
0
05 Nov 2024
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference
Jonathan Wenger
Kaiwen Wu
Philipp Hennig
Jacob R. Gardner
Geoff Pleiss
John P. Cunningham
88
7
0
01 Nov 2024
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
High-Dimensional Gaussian Process Regression with Soft Kernel Interpolation
Chris Camaño
Daniel Huang
BDLGP
117
1
0
28 Oct 2024
Scalable Random Feature Latent Variable Models
Scalable Random Feature Latent Variable Models
Ying Li
Zhidi Lin
Yuhao Liu
Michael Minyi Zhang
Pablo Martínez Olmos
Petar M. Djurić
BDLDRL
99
0
0
23 Oct 2024
Real-time experiment-theory closed-loop interaction for autonomous
  materials science
Real-time experiment-theory closed-loop interaction for autonomous materials science
Haotong Liang
Chuangye Wang
Heshan Yu
Dylan Kirsch
Rohit K. Pant
A. McDannald
A. Kusne
Ji-Cheng Zhao
Ichiro Takeuchi
52
0
0
22 Oct 2024
Efficient Non-Myopic Layered Bayesian Optimization For Large-Scale
  Bathymetric Informative Path Planning
Efficient Non-Myopic Layered Bayesian Optimization For Large-Scale Bathymetric Informative Path Planning
Alexander Kiessling
Ignacio Torroba
Chelsea Sidrane
Ivan Stenius
Jana Tumova
John Folkesson
25
1
0
21 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
61
1
0
18 Oct 2024
Graph Classification Gaussian Processes via Hodgelet Spectral Features
Graph Classification Gaussian Processes via Hodgelet Spectral Features
Mathieu Alain
So Takao
Xiaowen Dong
Bastian Rieck
Emmanuel Noutahi
159
2
0
14 Oct 2024
Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble
  Deep Kernel Learning Model
Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model
Yonghang Zhou
Hongyi Zhu
Yidong Chai
Yuanchun Jiang
Yezheng Liu
AAML
111
0
0
10 Oct 2024
Reactive Multi-Robot Navigation in Outdoor Environments Through
  Uncertainty-Aware Active Learning of Human Preference Landscape
Reactive Multi-Robot Navigation in Outdoor Environments Through Uncertainty-Aware Active Learning of Human Preference Landscape
Chao Huang
Wenshuo Zang
Carlo Pinciroli
Zhi Jane Li
Taposh Banerjee
Lili Su
Rui Liu
46
0
0
25 Sep 2024
Approximated Orthogonal Projection Unit: Stabilizing Regression Network
  Training Using Natural Gradient
Approximated Orthogonal Projection Unit: Stabilizing Regression Network Training Using Natural Gradient
Shaoqi Wang
Chunjie Yang
Siwei Lou
47
1
0
23 Sep 2024
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
74
1
0
20 Sep 2024
Amortized Variational Inference for Deep Gaussian Processes
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
37
0
0
18 Sep 2024
Latent mixed-effect models for high-dimensional longitudinal data
Latent mixed-effect models for high-dimensional longitudinal data
Priscilla Ong
Manuel Haußmann
Otto Lönnroth
Harri Lähdesmäki
54
0
0
17 Sep 2024
Adaptive Basis Function Selection for Computationally Efficient
  Predictions
Adaptive Basis Function Selection for Computationally Efficient Predictions
Anton Kullberg
Frida Marie Viset
Isaac Skog
Gustaf Hendeby
57
0
0
14 Aug 2024
Information Geometry and Beta Link for Optimizing Sparse Variational
  Student-t Processes
Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
John Paisley
33
0
0
13 Aug 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel
  Precision Matrices
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
111
0
0
05 Aug 2024
Aggregation Models with Optimal Weights for Distributed Gaussian
  Processes
Aggregation Models with Optimal Weights for Distributed Gaussian Processes
Liam Hebert
Sukhdeep S. Sodhi
62
0
0
01 Aug 2024
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
69
0
0
01 Aug 2024
1234...111213
Next