Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 190 papers shown
Title
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Probabilistic Models for Manufacturing Lead Times
Recep Yusuf Bekci
Yacine Mahdid
Jinling Xing
Nikita Letov
Ying Zhang
Zahid Pasha
24
0
0
28 Apr 2022
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
17
0
0
22 Apr 2022
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
Fully Decentralized, Scalable Gaussian Processes for Multi-Agent Federated Learning
George P. Kontoudis
D. Stilwell
FedML
16
8
0
06 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Learning Conditional Variational Autoencoders with Missing Covariates
S. Ramchandran
Gleb Tikhonov
Otto Lönnroth
Pekka Tiikkainen
Harri Lähdesmäki
CML
19
14
0
02 Mar 2022
Video is All You Need: Attacking PPG-based Biometric Authentication
Lin Li
Chao Chen
Lei Pan
Jun Zhang
Yang Xiang
AAML
21
13
0
02 Mar 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
19
7
0
25 Feb 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zihan Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
34
14
0
24 Feb 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
33
18
0
08 Feb 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
24
3
0
03 Feb 2022
Giga-scale Kernel Matrix Vector Multiplication on GPU
Robert Hu
Siu Lun Chau
Dino Sejdinovic
J. Glaunès
29
2
0
02 Feb 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
58
69
0
28 Jan 2022
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
24
12
0
17 Jan 2022
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
35
10
0
31 Dec 2021
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
20
3
0
19 Nov 2021
BOiLS: Bayesian Optimisation for Logic Synthesis
Antoine Grosnit
C. Malherbe
Rasul Tutunov
Xingchen Wan
Jun Wang
H. Ammar
14
30
0
11 Nov 2021
Fast and Scalable Spike and Slab Variable Selection in High-Dimensional Gaussian Processes
Hugh Dance
Brooks Paige
GP
20
10
0
08 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
21
20
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels
M. Hutchinson
Alexander Terenin
Viacheslav Borovitskiy
So Takao
Yee Whye Teh
M. Deisenroth
28
20
0
27 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
32
22
0
22 Oct 2021
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
16
11
0
12 Oct 2021
Scaling Bayesian Optimization With Game Theory
L. Mathesen
G. Pedrielli
R. L. Smith
19
1
0
07 Oct 2021
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
30
3
0
08 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
31
51
0
20 Aug 2021
PI3NN: Out-of-distribution-aware prediction intervals from three neural networks
Si-Yuan Liu
Pei Zhang
Dan Lu
Guannan Zhang
OODD
22
10
0
05 Aug 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
19
18
0
08 Jul 2021
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
29
19
0
21 Jun 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
30
16
0
21 Jun 2021
Combining Pseudo-Point and State Space Approximations for Sum-Separable Gaussian Processes
Will Tebbutt
Arno Solin
Richard Turner
21
8
0
18 Jun 2021
Deep Probabilistic Time Series Forecasting using Augmented Recurrent Input for Dynamic Systems
Haitao Liu
Changjun Liu
Xiaomo Jiang
Xudong Chen
Shuhua Yang
Xiaofang Wang
BDL
AI4TS
44
2
0
03 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
20
6
0
24 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
30
29
0
16 Apr 2021
High-Dimensional Bayesian Optimization with Multi-Task Learning for RocksDB
Sami Alabed
Eiko Yoneki
21
17
0
30 Mar 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
27
8
0
28 Feb 2021
Bias-Free Scalable Gaussian Processes via Randomized Truncations
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
10
19
0
12 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
27
15
0
12 Dec 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
25
18
0
25 Nov 2020
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
18
4
0
16 Nov 2020
Previous
1
2
3
4
Next