Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
107
7
0
30 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
82
0
0
02 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
170
0
0
01 Jul 2024
Quantifying Local Model Validity using Active Learning
Sven Lämmle
Can Bogoclu
Robert Voßhall
Anselm Haselhoff
Dirk Roos
75
0
0
11 Jun 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
73
0
0
07 Jun 2024
POAM: Probabilistic Online Attentive Mapping for Efficient Robotic Information Gathering
Weizhe (Wesley) Chen
Lantao Liu
Roni Khardon
68
1
0
06 Jun 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCV
BDL
132
2
0
06 Jun 2024
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
69
3
0
06 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
89
2
0
04 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
135
3
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
72
1
0
28 May 2024
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling
Shifan Zhao
Jiaying Lu
Carl Yang
Edmond Chow
Yuanzhe Xi
107
1
0
22 May 2024
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Sarah Zhao
Aditya Ravuri
V. Lalchand
Neil D. Lawrence
BDL
VLM
55
0
0
06 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
103
0
0
02 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAML
BDL
126
2
0
27 Apr 2024
Variational Bayesian surrogate modelling with application to robust design optimisation
Thomas A. Archbold
Ieva Kazlauskaite
F. Cirak
111
1
0
23 Apr 2024
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDL
UQCV
149
34
0
17 Apr 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
64
1
0
02 Apr 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
127
0
0
28 Mar 2024
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
92
5
0
16 Mar 2024
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
50
4
0
16 Mar 2024
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
108
3
0
13 Mar 2024
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
Petar M. Djurić
123
2
0
11 Mar 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
92
3
0
28 Feb 2024
Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Daniel Iong
Matthew McAnear
Yuezhou Qu
S. Zou
Gabor Toth
Yang Chen
44
0
0
27 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
47
1
0
15 Feb 2024
Latent variable model for high-dimensional point process with structured missingness
Maksim Sinelnikov
Manuel Haussmann
Harri Lähdesmäki
44
1
0
08 Feb 2024
Voronoi Candidates for Bayesian Optimization
Nathan Wycoff
John W. Smith
Annie S. Booth
R. Gramacy
90
2
0
07 Feb 2024
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
90
0
0
06 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
45
3
0
29 Jan 2024
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Zerui Tao
Toshihisa Tanaka
Qibin Zhao
78
2
0
15 Jan 2024
Improving sample efficiency of high dimensional Bayesian optimization with MCMC
Zeji Yi
Yunyue Wei
Chu Xin Cheng
Kaibo He
Yanan Sui
66
6
0
05 Jan 2024
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
UQCV
34
0
0
29 Dec 2023
Adaptation using spatially distributed Gaussian Processes
Botond Szabó
Amine Hadji
A. van der Vaart
59
2
0
21 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
58
0
0
13 Dec 2023
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
84
4
0
10 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
122
3
0
28 Nov 2023
Gaussian Processes for Monitoring Air-Quality in Kampala
Clara Stoddart
Lauren Shrack
Richard Sserunjogi
Usman Abdul-Ganiy
Engineer Bainomugisha
Deo Okure
Ruth Misener
Jose Pablo Folch
Ruby Sedgwick
45
1
0
28 Nov 2023
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian Deep Learning
Thomas Baldwin-McDonald
Mauricio A. Álvarez
104
1
0
24 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
89
2
0
21 Nov 2023
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
89
13
0
01 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
89
11
0
31 Oct 2023
Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes
Zheng Wang
Shikai Fang
Shibo Li
Shandian Zhe
41
3
0
30 Oct 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
72
11
0
30 Oct 2023
Deep Transformed Gaussian Processes
Francisco Javier Sáez-Maldonado
Juan Maroñas
Daniel Hernández-Lobato
95
0
0
27 Oct 2023
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Balhae Kim
Hyungi Lee
Juho Lee
BDL
60
3
0
27 Oct 2023
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Thomas Jones
Geoff Pleiss
Jacob R. Gardner
100
9
0
26 Oct 2023
UncertaintyPlayground: A Fast and Simplified Python Library for Uncertainty Estimation
Ilia Azizi
GP
26
0
0
23 Oct 2023
Optimising Distributions with Natural Gradient Surrogates
Jonathan So
Richard Turner
43
1
0
18 Oct 2023
Pseudo-Bayesian Optimization
Haoxian Chen
Henry Lam
116
2
0
15 Oct 2023
Previous
1
2
3
4
5
...
11
12
13
Next