ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
DKL-KAN: Scalable Deep Kernel Learning using Kolmogorov-Arnold Networks
Shrenik Zinage
Sudeepta Mondal
S. Sarkar
107
7
0
30 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
82
0
0
02 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
170
0
0
01 Jul 2024
Quantifying Local Model Validity using Active Learning
Quantifying Local Model Validity using Active Learning
Sven Lämmle
Can Bogoclu
Robert Voßhall
Anselm Haselhoff
Dirk Roos
75
0
0
11 Jun 2024
Robust Inference of Dynamic Covariance Using Wishart Processes and
  Sequential Monte Carlo
Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
Hester Huijsdens
D. Leeftink
Linda Geerligs
Max Hinne
73
0
0
07 Jun 2024
POAM: Probabilistic Online Attentive Mapping for Efficient Robotic
  Information Gathering
POAM: Probabilistic Online Attentive Mapping for Efficient Robotic Information Gathering
Weizhe (Wesley) Chen
Lantao Liu
Roni Khardon
68
1
0
06 Jun 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCVBDL
132
2
0
06 Jun 2024
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
69
3
0
06 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
89
2
0
04 Jun 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
135
3
0
28 May 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian
  Processes
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
José Miguel Hernández-Lobato
72
1
0
28 May 2024
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel
  Search and Subsampling
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling
Shifan Zhao
Jiaying Lu
Carl Yang
Edmond Chow
Yuanzhe Xi
107
1
0
22 May 2024
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data
Sarah Zhao
Aditya Ravuri
V. Lalchand
Neil D. Lawrence
BDLVLM
55
0
0
06 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
103
0
0
02 May 2024
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural
  Networks
Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
Yunzhen Feng
Tim G. J. Rudner
Nikolaos Tsilivis
Julia Kempe
AAMLBDL
126
2
0
27 Apr 2024
Variational Bayesian surrogate modelling with application to robust
  design optimisation
Variational Bayesian surrogate modelling with application to robust design optimisation
Thomas A. Archbold
Ieva Kazlauskaite
F. Cirak
111
1
0
23 Apr 2024
Variational Bayesian Last Layers
Variational Bayesian Last Layers
James Harrison
John Willes
Jasper Snoek
BDLUQCV
149
34
0
17 Apr 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
64
1
0
02 Apr 2024
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Tensor Network-Constrained Kernel Machines as Gaussian Processes
Frederiek Wesel
Kim Batselier
127
0
0
28 Mar 2024
Function-space Parameterization of Neural Networks for Sequential
  Learning
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
92
5
0
16 Mar 2024
Neural-Kernel Conditional Mean Embeddings
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
50
4
0
16 Mar 2024
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor
  Re-planning
Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
Gilhyun Ryou
Geoffrey Wang
S. Karaman
108
3
0
13 Mar 2024
Explainable Learning with Gaussian Processes
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
Petar M. Djurić
123
2
0
11 Mar 2024
Efficiently Computable Safety Bounds for Gaussian Processes in Active
  Learning
Efficiently Computable Safety Bounds for Gaussian Processes in Active Learning
Jörn Tebbe
Christoph Zimmer
A. Steland
Markus Lange-Hegermann
Fabian Mies
GP
92
3
0
28 Feb 2024
Sparse Variational Contaminated Noise Gaussian Process Regression with
  Applications in Geomagnetic Perturbations Forecasting
Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Daniel Iong
Matthew McAnear
Yuezhou Qu
S. Zou
Gabor Toth
Yang Chen
44
0
0
27 Feb 2024
Recommendations for Baselines and Benchmarking Approximate Gaussian
  Processes
Recommendations for Baselines and Benchmarking Approximate Gaussian Processes
Sebastian W. Ober
A. Artemev
Marcel Wagenlander
Rudolfs Grobins
Mark van der Wilk
GP
47
1
0
15 Feb 2024
Latent variable model for high-dimensional point process with structured
  missingness
Latent variable model for high-dimensional point process with structured missingness
Maksim Sinelnikov
Manuel Haussmann
Harri Lähdesmäki
44
1
0
08 Feb 2024
Voronoi Candidates for Bayesian Optimization
Voronoi Candidates for Bayesian Optimization
Nathan Wycoff
John W. Smith
Annie S. Booth
R. Gramacy
90
2
0
07 Feb 2024
Combining additivity and active subspaces for high-dimensional Gaussian
  process modeling
Combining additivity and active subspaces for high-dimensional Gaussian process modeling
M. Binois
Victor Picheny
90
0
0
06 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative
  Decoder (LDGD) Model for High-Dimensional Data
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
45
3
0
29 Jan 2024
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Efficient Nonparametric Tensor Decomposition for Binary and Count Data
Zerui Tao
Toshihisa Tanaka
Qibin Zhao
78
2
0
15 Jan 2024
Improving sample efficiency of high dimensional Bayesian optimization
  with MCMC
Improving sample efficiency of high dimensional Bayesian optimization with MCMC
Zeji Yi
Yunyue Wei
Chu Xin Cheng
Kaibo He
Yanan Sui
66
6
0
05 Jan 2024
Generative Posterior Networks for Approximately Bayesian Epistemic
  Uncertainty Estimation
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
Melrose Roderick
Felix Berkenkamp
Fatemeh Sheikholeslami
Zico Kolter
UQCV
34
0
0
29 Dec 2023
Adaptation using spatially distributed Gaussian Processes
Adaptation using spatially distributed Gaussian Processes
Botond Szabó
Amine Hadji
A. van der Vaart
59
2
0
21 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process
  (E-SGP) for flow emulation
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
58
0
0
13 Dec 2023
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field
  and Online Inference
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
84
4
0
10 Dec 2023
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Identifiable Feature Learning for Spatial Data with Nonlinear ICA
Hermanni Hälvä
Jonathan So
Richard Turner
Aapo Hyvarinen
CML
122
3
0
28 Nov 2023
Gaussian Processes for Monitoring Air-Quality in Kampala
Gaussian Processes for Monitoring Air-Quality in Kampala
Clara Stoddart
Lauren Shrack
Richard Sserunjogi
Usman Abdul-Ganiy
Engineer Bainomugisha
Deo Okure
Ruth Misener
Jose Pablo Folch
Ruby Sedgwick
45
1
0
28 Nov 2023
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
  Deep Learning
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian Deep Learning
Thomas Baldwin-McDonald
Mauricio A. Álvarez
104
1
0
24 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
89
2
0
21 Nov 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
89
13
0
01 Nov 2023
Stochastic Gradient Descent for Gaussian Processes Done Right
Stochastic Gradient Descent for Gaussian Processes Done Right
J. Lin
Shreyas Padhy
Javier Antorán
Austin Tripp
Alexander Terenin
Csaba Szepesvári
José Miguel Hernández-Lobato
David Janz
89
11
0
31 Oct 2023
Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes
Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes
Zheng Wang
Shikai Fang
Shibo Li
Shandian Zhe
41
3
0
30 Oct 2023
The Memory Perturbation Equation: Understanding Model's Sensitivity to
  Data
The Memory Perturbation Equation: Understanding Model's Sensitivity to Data
Peter Nickl
Lu Xu
Dharmesh Tailor
Thomas Möllenhoff
Mohammad Emtiyaz Khan
72
11
0
30 Oct 2023
Deep Transformed Gaussian Processes
Deep Transformed Gaussian Processes
Francisco Javier Sáez-Maldonado
Juan Maroñas
Daniel Hernández-Lobato
95
0
0
27 Oct 2023
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Function Space Bayesian Pseudocoreset for Bayesian Neural Networks
Balhae Kim
Hyungi Lee
Juho Lee
BDL
60
3
0
27 Oct 2023
Large-Scale Gaussian Processes via Alternating Projection
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
Jonathan Wenger
Haydn Thomas Jones
Geoff Pleiss
Jacob R. Gardner
100
9
0
26 Oct 2023
UncertaintyPlayground: A Fast and Simplified Python Library for
  Uncertainty Estimation
UncertaintyPlayground: A Fast and Simplified Python Library for Uncertainty Estimation
Ilia Azizi
GP
26
0
0
23 Oct 2023
Optimising Distributions with Natural Gradient Surrogates
Optimising Distributions with Natural Gradient Surrogates
Jonathan So
Richard Turner
43
1
0
18 Oct 2023
Pseudo-Bayesian Optimization
Pseudo-Bayesian Optimization
Haoxian Chen
Henry Lam
116
2
0
15 Oct 2023
Previous
12345...111213
Next