Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
80
291
0
16 Jul 2016
Exploring Prediction Uncertainty in Machine Translation Quality Estimation
Daniel Beck
Lucia Specia
Trevor Cohn
UQLM
84
19
0
30 Jun 2016
Disease Trajectory Maps
Peter F. Schulam
R. Arora
39
21
0
29 Jun 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
78
260
0
15 Jun 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
98
25
0
23 May 2016
Dynamic Decomposition of Spatiotemporal Neural Signals
L. Ambrogioni
Marcel van Gerven
E. Maris
27
44
0
09 May 2016
Gaussian Process Autonomous Mapping and Exploration for Range Sensing Mobile Robots
Maani Ghaffari Jadidi
Jaime Valls Miro
G. Dissanayake
GP
102
103
0
02 May 2016
Approximation Vector Machines for Large-scale Online Learning
Trung Le
T. Nguyen
Vu Nguyen
Dinh Q. Phung
75
27
0
22 Apr 2016
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
55
59
0
18 Apr 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
79
12
0
17 Apr 2016
Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel
T. Wilson
Stefan B. Williams
29
29
0
21 Mar 2016
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
140
41
0
29 Jan 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
473
4,832
0
04 Jan 2016
Transductive Log Opinion Pool of Gaussian Process Experts
Yanshuai Cao
David J. Fleet
17
6
0
24 Nov 2015
Thoughts on Massively Scalable Gaussian Processes
A. Wilson
Christoph Dann
H. Nickisch
123
110
0
05 Nov 2015
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
57
19
0
31 Oct 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
100
21
0
27 Oct 2015
Fast Gaussian Process Regression for Big Data
Sourish Das
Sasanka Roy
R. Sambasivan
GP
116
48
0
17 Sep 2015
Learning Structural Kernels for Natural Language Processing
Daniel Beck
Trevor Cohn
Christian Hardmeier
Lucia Specia
BDL
39
19
0
10 Aug 2015
String and Membrane Gaussian Processes
Yves-Laurent Kom Samo
Stephen J. Roberts
89
18
0
24 Jul 2015
Inference for determinantal point processes without spectral knowledge
Rémi Bardenet
Michalis K. Titsias
79
24
0
04 Jul 2015
Correlated Random Measures
Rajesh Ranganath
David M. Blei
206
21
0
02 Jul 2015
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
UQCV
127
56
0
11 Jun 2015
Provable Bayesian Inference via Particle Mirror Descent
Bo Dai
Niao He
H. Dai
Le Song
155
73
0
09 Jun 2015
Dropout as a Bayesian Approximation: Appendix
Y. Gal
Zoubin Ghahramani
BDL
113
66
0
06 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
131
192
0
27 Apr 2015
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
87
79
0
09 Mar 2015
Latent Gaussian Processes for Distribution Estimation of Multivariate Categorical Data
Y. Gal
Yutian Chen
Zoubin Ghahramani
SyDa
92
41
0
07 Mar 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
114
515
0
03 Mar 2015
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
106
1,045
0
19 Feb 2015
Distributed Gaussian Processes
M. Deisenroth
Jun Wei Ng
GP
114
342
0
10 Feb 2015
Discriminative training for Convolved Multiple-Output Gaussian processes
S. Gómez-González
Mauricio A. Alvarez
Hernán García
GP
30
4
0
07 Feb 2015
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
116
31
0
22 Jan 2015
Unbiased Bayes for Big Data: Paths of Partial Posteriors
Heiko Strathmann
Dino Sejdinovic
Mark Girolami
156
18
0
14 Jan 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
232
288
0
14 Jan 2015
GP-select: Accelerating EM using adaptive subspace preselection
Jacquelyn A. Shelton
Jan Gasthaus
Zhenwen Dai
Jörg Lücke
Arthur Gretton
94
18
0
10 Dec 2014
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
82
51
0
09 Dec 2014
Nested Variational Compression in Deep Gaussian Processes
J. Hensman
Neil D. Lawrence
BDL
68
67
0
03 Dec 2014
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation
K. H. Low
J. Yu
Jie Chen
Patrick Jaillet
65
52
0
17 Nov 2014
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
122
646
0
07 Nov 2014
Variational Inference for Gaussian Process Modulated Poisson Processes
C. Lloyd
Tom Gunter
Michael A. Osborne
Stephen J. Roberts
91
117
0
02 Nov 2014
Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
Yanshuai Cao
David J. Fleet
88
186
0
28 Oct 2014
Gaussian Process Models with Parallelization and GPU acceleration
Zhenwen Dai
Andreas C. Damianou
J. Hensman
Neil D. Lawrence
GP
63
36
0
18 Oct 2014
Probabilistic Network Metrics: Variational Bayesian Network Centrality
Harold Soh
72
0
0
15 Sep 2014
Automated Machine Learning on Big Data using Stochastic Algorithm Tuning
T. Nickson
Michael A. Osborne
S. Reece
Stephen J. Roberts
80
25
0
30 Jul 2014
Efficient Bayesian Nonparametric Modelling of Structured Point Processes
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
3DPC
3DV
93
30
0
25 Jul 2014
Smoothed Gradients for Stochastic Variational Inference
Stephan Mandt
David M. Blei
BDL
DiffM
104
29
0
13 Jun 2014
On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach
S. Tajbakhsh
N. Aybat
E. Castillo
91
10
0
21 May 2014
Fast Direct Methods for Gaussian Processes
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
122
386
0
24 Mar 2014
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
113
150
0
06 Feb 2014
Previous
1
2
3
...
11
12
13
Next