Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in the Time-Domain
Pablo A. Alvarado
Mauricio A. Alvarez
D. Stowell
34
7
0
30 Oct 2018
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
63
76
0
29 Oct 2018
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDL
CML
75
139
0
28 Oct 2018
Scalable Gaussian Processes on Discrete Domains
Vincent Fortuin
Gideon Dresdner
Heiko Strathmann
Gunnar Rätsch
BDL
116
3
0
24 Oct 2018
Data Association with Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
28
0
0
16 Oct 2018
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
Kieran R. Campbell
C. Yau
30
0
0
16 Oct 2018
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
95
42
0
09 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
154
1,106
0
28 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
82
43
0
24 Sep 2018
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks
Martin Trapp
Robert Peharz
C. Rasmussen
Franz Pernkopf
TPM
GP
54
7
0
12 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
30
0
0
08 Sep 2018
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
97
86
0
16 Aug 2018
Machine Learning of Space-Fractional Differential Equations
Mamikon A. Gulian
M. Raissi
P. Perdikaris
George Karniadakis
109
47
0
02 Aug 2018
Compressible Spectral Mixture Kernels with Sparse Dependency Structures for Gaussian Processes
Kai Chen
Yijue Dai
Feng Yin
Shuguang Cui
Sergios Theodoridis
53
3
0
01 Aug 2018
Noise Contrastive Priors for Functional Uncertainty
Danijar Hafner
Dustin Tran
Timothy Lillicrap
A. Irpan
James Davidson
AAML
BDL
UQCV
150
74
0
24 Jul 2018
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
58
12
0
24 Jul 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
91
102
0
24 Jul 2018
Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching
Çağatay Yıldız
Markus Heinonen
Jukka Intosalmi
Henrik Mannerstrom
Harri Lähdesmäki
DiffM
71
39
0
16 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
57
12
0
06 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
699
0
03 Jul 2018
Spatiotemporal Prediction of Ambulance Demand using Gaussian Process Regression
Seth Nabarro
Tristan Fletcher
John Shawe-Taylor
GP
16
2
0
28 Jun 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
95
15
0
26 Jun 2018
Neural-net-induced Gaussian process regression for function approximation and PDE solution
G. Pang
Liu Yang
George Karniadakis
78
73
0
22 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
121
70
0
06 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDL
GP
109
30
0
05 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
81
84
0
03 Jun 2018
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems
T. Hoang
Q. Hoang
K. H. Low
Jonathan P. How
53
7
0
23 May 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
56
38
0
22 May 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
72
6
0
19 May 2018
Heterogeneous Multi-output Gaussian Process Prediction
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
69
72
0
19 May 2018
Index Set Fourier Series Features for Approximating Multi-dimensional Periodic Kernels
A. Tompkins
F. Ramos
52
0
0
14 May 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
91
86
0
24 Mar 2018
Scalable Generalized Dynamic Topic Models
P. Jähnichen
F. Wenzel
Marius Kloft
Stephan Mandt
BDL
107
40
0
21 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
94
142
0
20 Mar 2018
Asymmetric kernel in Gaussian Processes for learning target variance
S. Pintea
Jan van Gemert
A. Smeulders
34
6
0
19 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
82
96
0
16 Mar 2018
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde
Markus Heinonen
Samuel Kaski
26
5
0
13 Mar 2018
Standing Wave Decomposition Gaussian Process
Chi-Ken Lu
Scott Cheng-Hsin Yang
Patrick Shafto
41
2
0
09 Mar 2018
ADMM-based Networked Stochastic Variational Inference
Hamza Anwar
Quanyan Zhu
BDL
119
3
0
27 Feb 2018
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
82
1
0
25 Feb 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
82
74
0
24 Feb 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
146
41
0
20 Feb 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
90
32
0
13 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
94
52
0
08 Feb 2018
Composite Gaussian Processes: Scalable Computation and Performance Analysis
Xiuming Liu
Dave Zachariah
Edith C.H. Ngai
33
0
0
31 Jan 2018
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
109
123
0
31 Jan 2018
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
87
35
0
28 Jan 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
76
76
0
28 Nov 2017
Sequential Randomized Matrix Factorization for Gaussian Processes: Efficient Predictions and Hyper-parameter Optimization
S. Bopardikar
G. Ekladious
24
0
0
19 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
238
698
0
15 Nov 2017
Previous
1
2
3
...
10
11
12
13
9
Next