ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in
  the Time-Domain
Sparse Gaussian Process Audio Source Separation Using Spectrum Priors in the Time-Domain
Pablo A. Alvarado
Mauricio A. Alvarez
D. Stowell
34
7
0
30 Oct 2018
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
63
76
0
29 Oct 2018
Gaussian Process Prior Variational Autoencoders
Gaussian Process Prior Variational Autoencoders
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
BDLCML
75
139
0
28 Oct 2018
Scalable Gaussian Processes on Discrete Domains
Scalable Gaussian Processes on Discrete Domains
Vincent Fortuin
Gideon Dresdner
Heiko Strathmann
Gunnar Rätsch
BDL
116
3
0
24 Oct 2018
Data Association with Gaussian Processes
Data Association with Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
28
0
0
16 Oct 2018
Decomposing feature-level variation with Covariate Gaussian Process
  Latent Variable Models
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens
Kieran R. Campbell
C. Yau
30
0
0
16 Oct 2018
Deep learning with differential Gaussian process flows
Deep learning with differential Gaussian process flows
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
95
42
0
09 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
154
1,106
0
28 Sep 2018
Orthogonally Decoupled Variational Gaussian Processes
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
82
43
0
24 Sep 2018
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product
  Networks
Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks
Martin Trapp
Robert Peharz
C. Rasmussen
Franz Pernkopf
TPMGP
54
7
0
12 Sep 2018
Non-Parametric Variational Inference with Graph Convolutional Networks
  for Gaussian Processes
Non-Parametric Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
Liping Liu
BDL
30
0
0
08 Sep 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
97
86
0
16 Aug 2018
Machine Learning of Space-Fractional Differential Equations
Machine Learning of Space-Fractional Differential Equations
Mamikon A. Gulian
M. Raissi
P. Perdikaris
George Karniadakis
109
47
0
02 Aug 2018
Compressible Spectral Mixture Kernels with Sparse Dependency Structures
  for Gaussian Processes
Compressible Spectral Mixture Kernels with Sparse Dependency Structures for Gaussian Processes
Kai Chen
Yijue Dai
Feng Yin
Shuguang Cui
Sergios Theodoridis
53
3
0
01 Aug 2018
Noise Contrastive Priors for Functional Uncertainty
Noise Contrastive Priors for Functional Uncertainty
Danijar Hafner
Dustin Tran
Timothy Lillicrap
A. Irpan
James Davidson
AAMLBDLUQCV
150
74
0
24 Jul 2018
Composite likelihood estimation for a gaussian process under fixed
  domain asymptotics
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
58
12
0
24 Jul 2018
Meta-Learning Priors for Efficient Online Bayesian Regression
Meta-Learning Priors for Efficient Online Bayesian Regression
James Harrison
Apoorva Sharma
Marco Pavone
BDL
91
102
0
24 Jul 2018
Learning Stochastic Differential Equations With Gaussian Processes
  Without Gradient Matching
Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching
Çağatay Yıldız
Markus Heinonen
Jukka Intosalmi
Henrik Mannerstrom
Harri Lähdesmäki
DiffM
71
39
0
16 Jul 2018
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
A. Panos
P. Dellaportas
Michalis K. Titsias
57
12
0
06 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
699
0
03 Jul 2018
Spatiotemporal Prediction of Ambulance Demand using Gaussian Process
  Regression
Spatiotemporal Prediction of Ambulance Demand using Gaussian Process Regression
Seth Nabarro
Tristan Fletcher
John Shawe-Taylor
GP
16
2
0
28 Jun 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
95
15
0
26 Jun 2018
Neural-net-induced Gaussian process regression for function
  approximation and PDE solution
Neural-net-induced Gaussian process regression for function approximation and PDE solution
G. Pang
Liu Yang
George Karniadakis
78
73
0
22 Jun 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
121
70
0
06 Jun 2018
Deep Gaussian Processes with Convolutional Kernels
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDLGP
109
30
0
05 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian
  Process Regression
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
81
84
0
03 Jun 2018
Collective Online Learning of Gaussian Processes in Massive Multi-Agent
  Systems
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems
T. Hoang
Q. Hoang
K. H. Low
Jonathan P. How
53
7
0
23 May 2018
Variational Learning on Aggregate Outputs with Gaussian Processes
Variational Learning on Aggregate Outputs with Gaussian Processes
H. Law
Dino Sejdinovic
E. Cameron
T. Lucas
Seth Flaxman
K. Battle
Kenji Fukumizu
56
38
0
22 May 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by
  Variance Backpropagation
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
72
6
0
19 May 2018
Heterogeneous Multi-output Gaussian Process Prediction
Heterogeneous Multi-output Gaussian Process Prediction
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
69
72
0
19 May 2018
Index Set Fourier Series Features for Approximating Multi-dimensional
  Periodic Kernels
Index Set Fourier Series Features for Approximating Multi-dimensional Periodic Kernels
A. Tompkins
F. Ramos
52
0
0
14 May 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
91
86
0
24 Mar 2018
Scalable Generalized Dynamic Topic Models
Scalable Generalized Dynamic Topic Models
P. Jähnichen
F. Wenzel
Marius Kloft
Stephan Mandt
BDL
107
40
0
21 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDLOffRLAI4CE
94
142
0
20 Mar 2018
Asymmetric kernel in Gaussian Processes for learning target variance
Asymmetric kernel in Gaussian Processes for learning target variance
S. Pintea
Jan van Gemert
A. Smeulders
34
6
0
19 Mar 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
82
96
0
16 Mar 2018
Variational zero-inflated Gaussian processes with sparse kernels
Variational zero-inflated Gaussian processes with sparse kernels
Pashupati Hegde
Markus Heinonen
Samuel Kaski
26
5
0
13 Mar 2018
Standing Wave Decomposition Gaussian Process
Standing Wave Decomposition Gaussian Process
Chi-Ken Lu
Scott Cheng-Hsin Yang
Patrick Shafto
41
2
0
09 Mar 2018
ADMM-based Networked Stochastic Variational Inference
ADMM-based Networked Stochastic Variational Inference
Hamza Anwar
Quanyan Zhu
BDL
119
3
0
27 Feb 2018
Conditionally Independent Multiresolution Gaussian Processes
Conditionally Independent Multiresolution Gaussian Processes
Jalil Taghia
Thomas B. Schon
82
1
0
25 Feb 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
82
74
0
24 Feb 2018
The Gaussian Process Autoregressive Regression Model (GPAR)
The Gaussian Process Autoregressive Regression Model (GPAR)
James Requeima
Will Tebbutt
W. Bruinsma
Richard Turner
146
41
0
20 Feb 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
90
32
0
13 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example
  optimization
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
94
52
0
08 Feb 2018
Composite Gaussian Processes: Scalable Computation and Performance
  Analysis
Composite Gaussian Processes: Scalable Computation and Performance Analysis
Xiuming Liu
Dave Zachariah
Edith C.H. Ngai
33
0
0
31 Jan 2018
Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models
Andreas Doerr
Christian Daniel
Martin Schiegg
D. Nguyen-Tuong
S. Schaal
Marc Toussaint
Sebastian Trimpe
109
123
0
31 Jan 2018
Algorithmic Linearly Constrained Gaussian Processes
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
87
35
0
28 Jan 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
76
76
0
28 Nov 2017
Sequential Randomized Matrix Factorization for Gaussian Processes:
  Efficient Predictions and Hyper-parameter Optimization
Sequential Randomized Matrix Factorization for Gaussian Processes: Efficient Predictions and Hyper-parameter Optimization
S. Bopardikar
G. Ekladious
24
0
0
19 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
238
698
0
15 Nov 2017
Previous
123...101112139
Next