Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
69
95
0
09 Nov 2017
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
191
24
0
01 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
164
1,100
0
01 Nov 2017
Bayesian Nonparametric Models for Biomedical Data Analysis
Tianjian Zhou
45
0
0
26 Oct 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
100
62
0
19 Oct 2017
Comparison of Gaussian process modeling software
Collin B. Erickson
Bruce E. Ankenman
S. Sanchez
GP
56
80
0
09 Oct 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
62
19
0
08 Oct 2017
Ensemble Multi-task Gaussian Process Regression with Multiple Latent Processes
Weitong Ruan
Eric L. Miller
GP
21
4
0
22 Sep 2017
Forecasting of commercial sales with large scale Gaussian Processes
Rodrigo Rivera
Evgeny Burnaev
59
22
0
16 Sep 2017
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
107
132
0
06 Sep 2017
A Nonparametric Model for Multimodal Collaborative Activities Summarization
Guy Rosman
John W. Fisher III
Daniela Rus
EgoV
32
0
0
04 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
89
60
0
16 Aug 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CE
PINN
121
1,146
0
02 Aug 2017
Big Data Regression Using Tree Based Segmentation
R. Sambasivan
Sourish Das
50
6
0
24 Jul 2017
Improving Output Uncertainty Estimation and Generalization in Deep Learning via Neural Network Gaussian Processes
Tomoharu Iwata
Zoubin Ghahramani
UQCV
BDL
71
42
0
19 Jul 2017
Bayesian Nonlinear Support Vector Machines for Big Data
F. Wenzel
Théo Galy-Fajou
M. Deutsch
Marius Kloft
BDL
73
27
0
18 Jul 2017
Properties and comparison of some Kriging sub-model aggregation methods
François Bachoc
N. Durrande
D. Rullière
C. Chevalier
70
10
0
17 Jul 2017
Large Scale Variable Fidelity Surrogate Modeling
Evgeny Burnaev
Alexey Zaytsev
AI4CE
101
29
0
12 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
123
172
0
08 Jul 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
80
53
0
08 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
81
216
0
05 Jun 2017
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai
Mauricio A. Alvarez
Neil D. Lawrence
62
33
0
27 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
144
424
0
24 May 2017
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
89
103
0
19 May 2017
Learning of Gaussian Processes in Distributed and Communication Limited Systems
Mostafa Tavassolipour
S. Motahari
M. Manzuri-Shalmani
59
22
0
07 May 2017
Asynchronous Distributed Variational Gaussian Processes for Regression
Hao Peng
Shandian Zhe
Y. Qi
54
29
0
22 Apr 2017
Parametric Gaussian Process Regression for Big Data
M. Raissi
111
39
0
11 Apr 2017
Treatment-Response Models for Counterfactual Reasoning with Continuous-time, Continuous-valued Interventions
Hossein Soleimani
Adarsh Subbaswamy
Suchi Saria
CML
97
23
0
06 Apr 2017
On the Statistical Efficiency of Compositional Nonparametric Prediction
Yixi Xu
Jean Honorio
Tianlin Li
36
3
0
06 Apr 2017
Joint Regression and Ranking for Image Enhancement
P. S. Chandakkar
Baoxin Li
8
2
0
05 Apr 2017
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
128
269
0
29 Mar 2017
Occupancy Map Building through Bayesian Exploration
Gilad Francis
Lionel Ott
Román Marchant
F. Ramos
81
22
0
01 Mar 2017
Embarrassingly Parallel Inference for Gaussian Processes
M. Zhang
Sinead Williamson
105
25
0
27 Feb 2017
Patchwork Kriging for Large-scale Gaussian Process Regression
Chiwoo Park
D. Apley
105
75
0
23 Jan 2017
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
85
554
0
10 Jan 2017
Monte Carlo Structured SVI for Two-Level Non-Conjugate Models
Rishit Sheth
Roni Khardon
BDL
76
7
0
12 Dec 2016
Improved prediction accuracy for disease risk mapping using Gaussian Process stacked generalisation
Samir Bhatt
E. Cameron
Seth R Flaxman
D. Weiss
David L. Smith
P. Gething
58
105
0
10 Dec 2016
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
99
202
0
21 Nov 2016
Faster variational inducing input Gaussian process classification
Pavel Izmailov
D. Kropotov
35
2
0
18 Nov 2016
A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression
Q. Hoang
T. Hoang
K. H. Low
64
39
0
18 Nov 2016
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
144
268
0
01 Nov 2016
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
104
106
0
27 Oct 2016
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
104
666
0
27 Oct 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
73
54
0
18 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
68
144
0
14 Oct 2016
Gray-box inference for structured Gaussian process models
P. Galliani
Amir Dezfouli
Edwin V. Bonilla
Novi Quadrianto
BDL
31
4
0
14 Sep 2016
On the Relationship between Online Gaussian Process Regression and Kernel Least Mean Squares Algorithms
S. Van Vaerenbergh
Jesus Fernandez-Bes
Victor Elvira
20
7
0
11 Sep 2016
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
74
28
0
02 Sep 2016
Incremental Nonlinear System Identification and Adaptive Particle Filtering Using Gaussian Process
Vahid Bastani
L. Marcenaro
C. Regazzoni
20
0
0
30 Aug 2016
Nested Kriging predictions for datasets with large number of observations
D. Rullière
N. Durrande
François Bachoc
C. Chevalier
79
67
0
19 Jul 2016
Previous
1
2
3
...
10
11
12
13
Next