ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Scalable Log Determinants for Gaussian Process Kernel Learning
Scalable Log Determinants for Gaussian Process Kernel Learning
Kun Dong
David Eriksson
H. Nickisch
D. Bindel
A. Wilson
69
95
0
09 Nov 2017
Stochastic Variational Inference for Bayesian Sparse Gaussian Process
  Regression
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression
Haibin Yu
T. Hoang
K. H. Low
Patrick Jaillet
BDL
191
24
0
01 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
164
1,100
0
01 Nov 2017
Bayesian Nonparametric Models for Biomedical Data Analysis
Bayesian Nonparametric Models for Biomedical Data Analysis
Tianjian Zhou
45
0
0
26 Oct 2017
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor
  Train Decomposition
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
100
62
0
19 Oct 2017
Comparison of Gaussian process modeling software
Comparison of Gaussian process modeling software
Collin B. Erickson
Bruce E. Ankenman
S. Sanchez
GP
56
80
0
09 Oct 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
62
19
0
08 Oct 2017
Ensemble Multi-task Gaussian Process Regression with Multiple Latent
  Processes
Ensemble Multi-task Gaussian Process Regression with Multiple Latent Processes
Weitong Ruan
Eric L. Miller
GP
21
4
0
22 Sep 2017
Forecasting of commercial sales with large scale Gaussian Processes
Forecasting of commercial sales with large scale Gaussian Processes
Rodrigo Rivera
Evgeny Burnaev
59
22
0
16 Sep 2017
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
107
132
0
06 Sep 2017
A Nonparametric Model for Multimodal Collaborative Activities
  Summarization
A Nonparametric Model for Multimodal Collaborative Activities Summarization
Guy Rosman
John W. Fisher III
Daniela Rus
EgoV
32
0
0
04 Sep 2017
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction
Hossein Soleimani
J. Hensman
Suchi Saria
89
60
0
16 Aug 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial
  Differential Equations
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CEPINN
121
1,146
0
02 Aug 2017
Big Data Regression Using Tree Based Segmentation
Big Data Regression Using Tree Based Segmentation
R. Sambasivan
Sourish Das
50
6
0
24 Jul 2017
Improving Output Uncertainty Estimation and Generalization in Deep
  Learning via Neural Network Gaussian Processes
Improving Output Uncertainty Estimation and Generalization in Deep Learning via Neural Network Gaussian Processes
Tomoharu Iwata
Zoubin Ghahramani
UQCVBDL
71
42
0
19 Jul 2017
Bayesian Nonlinear Support Vector Machines for Big Data
Bayesian Nonlinear Support Vector Machines for Big Data
F. Wenzel
Théo Galy-Fajou
M. Deutsch
Marius Kloft
BDL
73
27
0
18 Jul 2017
Properties and comparison of some Kriging sub-model aggregation methods
Properties and comparison of some Kriging sub-model aggregation methods
François Bachoc
N. Durrande
D. Rullière
C. Chevalier
70
10
0
17 Jul 2017
Large Scale Variable Fidelity Surrogate Modeling
Large Scale Variable Fidelity Surrogate Modeling
Evgeny Burnaev
Alexey Zaytsev
AI4CE
101
29
0
12 Jul 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDLAAML
123
172
0
08 Jul 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
80
53
0
08 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
81
216
0
05 Jun 2017
Efficient Modeling of Latent Information in Supervised Learning using
  Gaussian Processes
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes
Zhenwen Dai
Mauricio A. Alvarez
Neil D. Lawrence
62
33
0
27 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDLGP
144
424
0
24 May 2017
Streaming Sparse Gaussian Process Approximations
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
89
103
0
19 May 2017
Learning of Gaussian Processes in Distributed and Communication Limited
  Systems
Learning of Gaussian Processes in Distributed and Communication Limited Systems
Mostafa Tavassolipour
S. Motahari
M. Manzuri-Shalmani
59
22
0
07 May 2017
Asynchronous Distributed Variational Gaussian Processes for Regression
Asynchronous Distributed Variational Gaussian Processes for Regression
Hao Peng
Shandian Zhe
Y. Qi
54
29
0
22 Apr 2017
Parametric Gaussian Process Regression for Big Data
Parametric Gaussian Process Regression for Big Data
M. Raissi
111
39
0
11 Apr 2017
Treatment-Response Models for Counterfactual Reasoning with
  Continuous-time, Continuous-valued Interventions
Treatment-Response Models for Counterfactual Reasoning with Continuous-time, Continuous-valued Interventions
Hossein Soleimani
Adarsh Subbaswamy
Suchi Saria
CML
97
23
0
06 Apr 2017
On the Statistical Efficiency of Compositional Nonparametric Prediction
On the Statistical Efficiency of Compositional Nonparametric Prediction
Yixi Xu
Jean Honorio
Tianlin Li
36
3
0
06 Apr 2017
Joint Regression and Ranking for Image Enhancement
Joint Regression and Ranking for Image Enhancement
P. S. Chandakkar
Baoxin Li
8
2
0
05 Apr 2017
Numerical Gaussian Processes for Time-dependent and Non-linear Partial
  Differential Equations
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
128
269
0
29 Mar 2017
Occupancy Map Building through Bayesian Exploration
Occupancy Map Building through Bayesian Exploration
Gilad Francis
Lionel Ott
Román Marchant
F. Ramos
81
22
0
01 Mar 2017
Embarrassingly Parallel Inference for Gaussian Processes
Embarrassingly Parallel Inference for Gaussian Processes
M. Zhang
Sinead Williamson
105
25
0
27 Feb 2017
Patchwork Kriging for Large-scale Gaussian Process Regression
Patchwork Kriging for Large-scale Gaussian Process Regression
Chiwoo Park
D. Apley
105
75
0
23 Jan 2017
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
85
554
0
10 Jan 2017
Monte Carlo Structured SVI for Two-Level Non-Conjugate Models
Monte Carlo Structured SVI for Two-Level Non-Conjugate Models
Rishit Sheth
Roni Khardon
BDL
76
7
0
12 Dec 2016
Improved prediction accuracy for disease risk mapping using Gaussian
  Process stacked generalisation
Improved prediction accuracy for disease risk mapping using Gaussian Process stacked generalisation
Samir Bhatt
E. Cameron
Seth R Flaxman
D. Weiss
David L. Smith
P. Gething
58
105
0
10 Dec 2016
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
99
202
0
21 Nov 2016
Faster variational inducing input Gaussian process classification
Faster variational inducing input Gaussian process classification
Pavel Izmailov
D. Kropotov
35
2
0
18 Nov 2016
A Generalized Stochastic Variational Bayesian Hyperparameter Learning
  Framework for Sparse Spectrum Gaussian Process Regression
A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression
Q. Hoang
T. Hoang
K. H. Low
64
39
0
18 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
144
268
0
01 Nov 2016
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
104
106
0
27 Oct 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
104
666
0
27 Oct 2016
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GPBDL
73
54
0
18 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
68
144
0
14 Oct 2016
Gray-box inference for structured Gaussian process models
Gray-box inference for structured Gaussian process models
P. Galliani
Amir Dezfouli
Edwin V. Bonilla
Novi Quadrianto
BDL
31
4
0
14 Sep 2016
On the Relationship between Online Gaussian Process Regression and
  Kernel Least Mean Squares Algorithms
On the Relationship between Online Gaussian Process Regression and Kernel Least Mean Squares Algorithms
S. Van Vaerenbergh
Jesus Fernandez-Bes
Victor Elvira
20
7
0
11 Sep 2016
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
74
28
0
02 Sep 2016
Incremental Nonlinear System Identification and Adaptive Particle
  Filtering Using Gaussian Process
Incremental Nonlinear System Identification and Adaptive Particle Filtering Using Gaussian Process
Vahid Bastani
L. Marcenaro
C. Regazzoni
20
0
0
30 Aug 2016
Nested Kriging predictions for datasets with large number of
  observations
Nested Kriging predictions for datasets with large number of observations
D. Rullière
N. Durrande
François Bachoc
C. Chevalier
79
67
0
19 Jul 2016
Previous
123...10111213
Next