ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Surrogate modeling for stochastic crack growth processes in structural
  health monitoring applications
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
74
0
0
11 Oct 2023
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Sven Lämmle
Can Bogoclu
K. Cremanns
D. Roos
62
5
0
29 Sep 2023
Pointwise uncertainty quantification for sparse variational Gaussian
  process regression with a Brownian motion prior
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
77
4
0
29 Sep 2023
Neural Operator Variational Inference based on Regularized Stein
  Discrepancy for Deep Gaussian Processes
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
52
1
0
22 Sep 2023
Stochastic stiffness identification and response estimation of
  Timoshenko beams via physics-informed Gaussian processes
Stochastic stiffness identification and response estimation of Timoshenko beams via physics-informed Gaussian processes
Gledson Rodrigo Tondo
Sebastian Rau
I. Kavrakov
Guido Morgenthal
94
6
0
21 Sep 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor
  Network Models
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
77
1
0
11 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by
  LASSO-like Penalty
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
69
3
0
08 Sep 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational
  Deep Kernel Learning
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
76
4
0
08 Sep 2023
Sparse Function-space Representation of Neural Networks
Sparse Function-space Representation of Neural Networks
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
75
1
0
05 Sep 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
  Process State-Space Models
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
93
3
0
03 Sep 2023
A Unifying Variational Framework for Gaussian Process Motion Planning
A Unifying Variational Framework for Gaussian Process Motion Planning
Lucas Cosier
Rares Iordan
Sicelukwanda Zwane
Giovanni Franzese
James T. Wilson
M. Deisenroth
Alexander Terenin
Yasemin Bekiroglu
3DV
81
4
0
02 Sep 2023
Dynamic Factor Analysis with Dependent Gaussian Processes for
  High-Dimensional Gene Expression Trajectories
Dynamic Factor Analysis with Dependent Gaussian Processes for High-Dimensional Gene Expression Trajectories
Jiachen Cai
Robert J. B. Goudie
Colin Starr
Brian D. M. Tom
26
1
0
06 Jul 2023
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Doksoo Lee
Wei Chen
Liwei Wang
Yu-Chin Chan
Wei Chen
AI4CE
67
85
0
01 Jul 2023
Tanimoto Random Features for Scalable Molecular Machine Learning
Tanimoto Random Features for Scalable Molecular Machine Learning
Austin Tripp
S. Bacallado
Sukriti Singh
José Miguel Hernández-Lobato
74
8
0
26 Jun 2023
Leveraging Locality and Robustness to Achieve Massively Scalable
  Gaussian Process Regression
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
68
4
0
26 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
93
10
0
20 Jun 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient
  Descent
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
110
25
0
20 Jun 2023
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering
  In High Dimensions
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
87
11
0
13 Jun 2023
Improving Hyperparameter Learning under Approximate Inference in
  Gaussian Process Models
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
61
3
0
07 Jun 2023
Rao-Blackwellized Particle Smoothing for Simultaneous Localization and
  Mapping
Rao-Blackwellized Particle Smoothing for Simultaneous Localization and Mapping
Manon Kok
Arno Solin
Thomas B. Schon
56
6
0
06 Jun 2023
Memory-Based Dual Gaussian Processes for Sequential Learning
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
95
8
0
06 Jun 2023
Bivariate Causal Discovery using Bayesian Model Selection
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
78
3
0
05 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDLUQCV
109
1
0
26 May 2023
Privacy-aware Gaussian Process Regression
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
66
1
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse Protein Folding Using Deep Bayesian Optimization
Natalie Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
101
3
0
25 May 2023
Stochastic PDE representation of random fields for large-scale Gaussian
  process regression and statistical finite element analysis
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
67
12
0
23 May 2023
Efficient and Interpretable Additive Gaussian Process Regression and
  Application to Analysis of Hourly-recorded $\text{NO}_2$ Concentrations in
  London
Efficient and Interpretable Additive Gaussian Process Regression and Application to Analysis of Hourly-recorded NO2\text{NO}_2NO2​ Concentrations in London
Sahoko Ishida
Wicher P. Bergsma
27
0
0
11 May 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian
  Processes
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
64
0
0
27 Apr 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
89
7
0
11 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
59
2
0
05 Apr 2023
Sparse Gaussian Processes with Spherical Harmonic Features Revisited
Sparse Gaussian Processes with Spherical Harmonic Features Revisited
Stefanos Eleftheriadis
Dominic Richards
J. Hensman
76
1
0
28 Mar 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of
  Examples
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
82
12
0
09 Mar 2023
Calibrating Transformers via Sparse Gaussian Processes
Calibrating Transformers via Sparse Gaussian Processes
Wenlong Chen
Yingzhen Li
UQCV
119
12
0
04 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian
  Gaussian Processes
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
52
2
0
03 Mar 2023
Efficient Sensor Placement from Regression with Sparse Gaussian
  Processes in Continuous and Discrete Spaces
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
71
1
0
28 Feb 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDLUQCV
135
4
0
24 Feb 2023
Adaptive Sparse Gaussian Process
Adaptive Sparse Gaussian Process
Vanessa Gómez-Verdejo
Emilio Parrado-Hernández
M. Martínez‐Ramón
44
7
0
20 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
75
9
0
20 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
66
7
0
19 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDaBDLUQCV
81
7
0
09 Feb 2023
Learning Choice Functions with Gaussian Processes
Learning Choice Functions with Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
62
5
0
01 Feb 2023
Variational sparse inverse Cholesky approximation for latent Gaussian
  processes via double Kullback-Leibler minimization
Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
JIAN-PENG Cao
Myeongjong Kang
Felix Jimenez
H. Sang
Florian Schäfer
Matthias Katzfuss
73
7
0
30 Jan 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
110
26
0
24 Jan 2023
An iterative multi-fidelity approach for model order reduction of
  multi-dimensional input parametric PDE systems
An iterative multi-fidelity approach for model order reduction of multi-dimensional input parametric PDE systems
Manisha Chetry
D. Borzacchiello
Lucas Lestandi
Luisa Rocha-Da-Silva
44
0
0
23 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
117
7
0
21 Jan 2023
Scalable Gaussian Process Inference with Stan
Scalable Gaussian Process Inference with Stan
Till Hoffmann
J. Onnela
GP
35
4
0
21 Jan 2023
Robust Bayesian Target Value Optimization
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
79
10
0
11 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
87
5
0
15 Dec 2022
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
89
44
0
06 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDLCMLOffRL
79
1
0
20 Nov 2022
Previous
123456...111213
Next