Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 190 papers shown
Title
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
28
34
0
03 Nov 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
21
25
0
26 Oct 2020
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
27
121
0
24 Oct 2020
Semi-parametric
γ
γ
γ
-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
21
7
0
20 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
21
23
0
02 Oct 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
12
5
0
09 Sep 2020
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
19
3
0
12 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
29
69
0
01 Aug 2020
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
20
2,032
0
30 Jul 2020
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
27
34
0
17 Jul 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
40
126
0
01 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
27
54
0
30 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
24
113
0
18 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
17
120
0
17 Jun 2020
Balance is key: Private median splits yield high-utility random trees
Shorya Consul
Sinead Williamson
17
2
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
22
12
0
17 Mar 2020
Localising Faster: Efficient and precise lidar-based robot localisation in large-scale environments
Li Sun
Daniel Adolfsson
Martin Magnusson
Henrik Andreasson
Ingmar Posner
T. Duckett
40
30
0
04 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
28
22
0
18 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
30
15
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
27
15
0
11 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
20
23
0
10 Feb 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
27
24
0
15 Jan 2020
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
14
24
0
04 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes
Creighton Heaukulani
Mark van der Wilk
BDL
32
15
0
22 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
28
38
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
35
30
0
13 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
29
3
0
31 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
19
5
0
29 May 2019
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
Shiliang Sun
AI4TS
21
20
0
14 May 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
10
225
0
19 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
26
151
0
08 Mar 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
18
2
0
03 Jan 2019
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
14
75
0
29 Oct 2018
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
36
83
0
16 Aug 2018
Machine Learning of Space-Fractional Differential Equations
Mamikon A. Gulian
M. Raissi
P. Perdikaris
George Karniadakis
32
46
0
02 Aug 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
23
83
0
03 Jun 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
BDL
25
85
0
24 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
23
142
0
20 Mar 2018
Previous
1
2
3
4
Next