Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
74
0
0
11 Oct 2023
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Sven Lämmle
Can Bogoclu
K. Cremanns
D. Roos
62
5
0
29 Sep 2023
Pointwise uncertainty quantification for sparse variational Gaussian process regression with a Brownian motion prior
Luke Travis
Kolyan Ray
77
4
0
29 Sep 2023
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
52
1
0
22 Sep 2023
Stochastic stiffness identification and response estimation of Timoshenko beams via physics-informed Gaussian processes
Gledson Rodrigo Tondo
Sebastian Rau
I. Kavrakov
Guido Morgenthal
94
6
0
21 Sep 2023
Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models
Frederiek Wesel
Kim Batselier
77
1
0
11 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
69
3
0
08 Sep 2023
Parallel and Limited Data Voice Conversion Using Stochastic Variational Deep Kernel Learning
Mohamadreza Jafaryani
H. Sheikhzadeh
V. Pourahmadi
76
4
0
08 Sep 2023
Sparse Function-space Representation of Neural Networks
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
Joni Pajarinen
Arno Solin
BDL
75
1
0
05 Sep 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
93
3
0
03 Sep 2023
A Unifying Variational Framework for Gaussian Process Motion Planning
Lucas Cosier
Rares Iordan
Sicelukwanda Zwane
Giovanni Franzese
James T. Wilson
M. Deisenroth
Alexander Terenin
Yasemin Bekiroglu
3DV
81
4
0
02 Sep 2023
Dynamic Factor Analysis with Dependent Gaussian Processes for High-Dimensional Gene Expression Trajectories
Jiachen Cai
Robert J. B. Goudie
Colin Starr
Brian D. M. Tom
26
1
0
06 Jul 2023
Data-Driven Design for Metamaterials and Multiscale Systems: A Review
Doksoo Lee
Wei Chen
Liwei Wang
Yu-Chin Chan
Wei Chen
AI4CE
67
85
0
01 Jul 2023
Tanimoto Random Features for Scalable Molecular Machine Learning
Austin Tripp
S. Bacallado
Sukriti Singh
José Miguel Hernández-Lobato
74
8
0
26 Jun 2023
Leveraging Locality and Robustness to Achieve Massively Scalable Gaussian Process Regression
Robert Allison
Anthony Stephenson
F. Samuel
Edward O. Pyzer-Knapp
UQCV
68
4
0
26 Jun 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
93
10
0
20 Jun 2023
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. Lin
Javier Antorán
Shreyas Padhy
David Janz
José Miguel Hernández-Lobato
Alexander Terenin
110
25
0
20 Jun 2023
The Rank-Reduced Kalman Filter: Approximate Dynamical-Low-Rank Filtering In High Dimensions
Jonathan Schmidt
Philipp Hennig
Jorg Nick
Filip Tronarp
87
11
0
13 Jun 2023
Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models
Rui Li
S. T. John
Arno Solin
BDL
61
3
0
07 Jun 2023
Rao-Blackwellized Particle Smoothing for Simultaneous Localization and Mapping
Manon Kok
Arno Solin
Thomas B. Schon
56
6
0
06 Jun 2023
Memory-Based Dual Gaussian Processes for Sequential Learning
Paul E. Chang
Prakhar Verma
S. T. John
Arno Solin
Mohammad Emtiyaz Khan
GP
95
8
0
06 Jun 2023
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
78
3
0
05 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
109
1
0
26 May 2023
Privacy-aware Gaussian Process Regression
Rui Tuo
R. Bhattacharya
66
1
0
25 May 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Natalie Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
101
3
0
25 May 2023
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
67
12
0
23 May 2023
Efficient and Interpretable Additive Gaussian Process Regression and Application to Analysis of Hourly-recorded
NO
2
\text{NO}_2
NO
2
Concentrations in London
Sahoko Ishida
Wicher P. Bergsma
27
0
0
11 May 2023
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
Louis C. Tiao
Vincent Dutordoir
Victor Picheny
BDL
64
0
0
27 Apr 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
89
7
0
11 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
59
2
0
05 Apr 2023
Sparse Gaussian Processes with Spherical Harmonic Features Revisited
Stefanos Eleftheriadis
Dominic Richards
J. Hensman
76
1
0
28 Mar 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
82
12
0
09 Mar 2023
Calibrating Transformers via Sparse Gaussian Processes
Wenlong Chen
Yingzhen Li
UQCV
119
12
0
04 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
52
2
0
03 Mar 2023
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
71
1
0
28 Feb 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
135
4
0
24 Feb 2023
Adaptive Sparse Gaussian Process
Vanessa Gómez-Verdejo
Emilio Parrado-Hernández
M. Martínez‐Ramón
44
7
0
20 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
75
9
0
20 Feb 2023
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
66
7
0
19 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
81
7
0
09 Feb 2023
Learning Choice Functions with Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
62
5
0
01 Feb 2023
Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization
JIAN-PENG Cao
Myeongjong Kang
Felix Jimenez
H. Sang
Florian Schäfer
Matthias Katzfuss
73
7
0
30 Jan 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
110
26
0
24 Jan 2023
An iterative multi-fidelity approach for model order reduction of multi-dimensional input parametric PDE systems
Manisha Chetry
D. Borzacchiello
Lucas Lestandi
Luisa Rocha-Da-Silva
44
0
0
23 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
117
7
0
21 Jan 2023
Scalable Gaussian Process Inference with Stan
Till Hoffmann
J. Onnela
GP
35
4
0
21 Jan 2023
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
79
10
0
11 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
87
5
0
15 Dec 2022
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
89
44
0
06 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
79
1
0
20 Nov 2022
Previous
1
2
3
4
5
6
...
11
12
13
Next