ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Variational Auto-Regressive Gaussian Processes for Continual Learning
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
83
26
0
09 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
73
36
0
09 Jun 2020
PIVEN: A Deep Neural Network for Prediction Intervals with Specific
  Value Prediction
PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction
Eli Simhayev
Gilad Katz
Lior Rokach
OOD
51
12
0
09 Jun 2020
Physics Informed Deep Kernel Learning
Physics Informed Deep Kernel Learning
Ziyi Wang
Wei W. Xing
Robert M. Kirby
Shandian Zhe
PINN
73
10
0
08 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery
  of Nonlinear Partial Differential Operators from Data
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
42
8
0
07 Jun 2020
Quadruply Stochastic Gaussian Processes
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
P. Nair
GP
48
3
0
04 Jun 2020
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor
  Maneuvers
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
Gilhyun Ryou
E. Tal
S. Karaman
93
42
0
03 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
  Predictive Uncertainties
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDLUQCV
74
8
0
22 May 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
CFDNet: a deep learning-based accelerator for fluid simulations
CFDNet: a deep learning-based accelerator for fluid simulations
Octavi Obiols-Sales
Abhinav Vishnu
Nicholas Malaya
Aparna Chandramowlishwaran
AI4CE
57
152
0
09 May 2020
Active Preference-Based Gaussian Process Regression for Reward Learning
Active Preference-Based Gaussian Process Regression for Reward Learning
Erdem Biyik
Nicolas Huynh
Mykel J. Kochenderfer
Dorsa Sadigh
GP
96
110
0
06 May 2020
The ICSCREAM methodology: Identification of penalizing configurations in
  computer experiments using screening and metamodel -- Applications in
  thermal-hydraulics
The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel -- Applications in thermal-hydraulics
A. M. CEA-DES
Bertrand Iooss
V. Chabridon
61
17
0
08 Apr 2020
Direct loss minimization algorithms for sparse Gaussian processes
Direct loss minimization algorithms for sparse Gaussian processes
Yadi Wei
Rishit Sheth
Roni Khardon
74
14
0
07 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
70
3
0
03 Apr 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
83
12
0
17 Mar 2020
Linear-time inference for Gaussian Processes on one dimension
Linear-time inference for Gaussian Processes on one dimension
Jackson Loper
David M. Blei
John P. Cunningham
Liam Paninski
95
17
0
11 Mar 2020
Scalable Uncertainty for Computer Vision with Functional Variational
  Inference
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDLUQCV
424
22
0
06 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCVBDL
55
0
0
06 Mar 2020
Localising Faster: Efficient and precise lidar-based robot localisation
  in large-scale environments
Localising Faster: Efficient and precise lidar-based robot localisation in large-scale environments
Li Sun
Daniel Adolfsson
Martin Magnusson
Henrik Andreasson
Ingmar Posner
T. Duckett
89
30
0
04 Mar 2020
Gaussian Process Policy Optimization
Gaussian Process Policy Optimization
Anand Srinivasa Rao
Bidipta Sarkar
Tejas Narayanan
GP
33
0
0
02 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
109
95
0
02 Mar 2020
Online Binary Space Partitioning Forests
Online Binary Space Partitioning Forests
Xuhui Fan
Bin Li
Scott A. Sisson
43
8
0
29 Feb 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
85
165
0
21 Feb 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
23
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian
  Processes
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
39
5
0
19 Feb 2020
Deep Gaussian Markov Random Fields
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
61
22
0
18 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
177
17
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
81
15
0
11 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
Estimating Latent Demand of Shared Mobility through Censored Gaussian
  Processes
Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes
Daniele Gammelli
Inon Peled
Filipe Rodrigues
Dario Pacino
H. A. Kurtaran
Francisco Câmara Pereira
92
50
0
21 Jan 2020
Scalable Hyperparameter Optimization with Lazy Gaussian Processes
Scalable Hyperparameter Optimization with Lazy Gaussian Processes
Raju Ram
Sabine Müller
Franz-Josef Pfreundt
N. Gauger
J. Keuper
GP
23
5
0
16 Jan 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
85
26
0
15 Jan 2020
Bayesian Quantile and Expectile Optimisation
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
64
21
0
12 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
26
1
0
02 Jan 2020
Scalable Gaussian Process Regression for Kernels with a Non-Stationary
  Phase
Scalable Gaussian Process Regression for Kernels with a Non-Stationary Phase
J. Grasshoff
Alexandra Jankowski
P. Rostalski
55
3
0
25 Dec 2019
Gaussian Process Latent Variable Model Factorization for Context-aware
  Recommender Systems
Gaussian Process Latent Variable Model Factorization for Context-aware Recommender Systems
Wei Huang
R. Xu
BDLLRM
22
4
0
19 Dec 2019
Gaussian Process Priors for View-Aware Inference
Gaussian Process Priors for View-Aware Inference
Wenshuai Zhao
Ari Heljakka
Arno Solin
BDL
35
1
0
06 Dec 2019
Ordinal Bayesian Optimisation
Ordinal Bayesian Optimisation
Victor Picheny
Sattar Vakili
A. Artemev
55
8
0
05 Dec 2019
Scalable Bayesian Preference Learning for Crowds
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
120
24
0
04 Dec 2019
A Fully Natural Gradient Scheme for Improving Inference of the
  Heterogeneous Multi-Output Gaussian Process Model
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
119
5
0
22 Nov 2019
GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian
  Process Models
GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models
P. Berkovich
E. Perim
W. Bruinsma
13
0
0
05 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
48
14
0
05 Nov 2019
Continual Multi-task Gaussian Processes
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
80
13
0
31 Oct 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
88
43
0
26 Oct 2019
Parametric Gaussian Process Regressors
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
65
5
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
140
3
0
15 Oct 2019
Regularized Sparse Gaussian Processes
Regularized Sparse Gaussian Processes
Rui Meng
Herbert Lee
Braden C. Soper
Priyadip Ray
19
0
0
13 Oct 2019
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
95
23
0
17 Sep 2019
Efficient Transfer Bayesian Optimization with Auxiliary Information
Efficient Transfer Bayesian Optimization with Auxiliary Information
Tomoharu Iwata
Takuma Otsuka
71
2
0
17 Sep 2019
Previous
123...789...111213
Next