Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
83
26
0
09 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
73
36
0
09 Jun 2020
PIVEN: A Deep Neural Network for Prediction Intervals with Specific Value Prediction
Eli Simhayev
Gilad Katz
Lior Rokach
OOD
51
12
0
09 Jun 2020
Physics Informed Deep Kernel Learning
Ziyi Wang
Wei W. Xing
Robert M. Kirby
Shandian Zhe
PINN
73
10
0
08 Jun 2020
A Survey of Bayesian Statistical Approaches for Big Data
Farzana Jahan
Insha Ullah
Kerrie Mengersen
102
14
0
08 Jun 2020
Bayesian Hidden Physics Models: Uncertainty Quantification for Discovery of Nonlinear Partial Differential Operators from Data
Steven Atkinson
42
8
0
07 Jun 2020
Quadruply Stochastic Gaussian Processes
Trefor W. Evans
P. Nair
GP
48
3
0
04 Jun 2020
Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
Gilhyun Ryou
E. Tal
S. Karaman
93
42
0
03 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
74
8
0
22 May 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
CFDNet: a deep learning-based accelerator for fluid simulations
Octavi Obiols-Sales
Abhinav Vishnu
Nicholas Malaya
Aparna Chandramowlishwaran
AI4CE
57
152
0
09 May 2020
Active Preference-Based Gaussian Process Regression for Reward Learning
Erdem Biyik
Nicolas Huynh
Mykel J. Kochenderfer
Dorsa Sadigh
GP
96
110
0
06 May 2020
The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel -- Applications in thermal-hydraulics
A. M. CEA-DES
Bertrand Iooss
V. Chabridon
61
17
0
08 Apr 2020
Direct loss minimization algorithms for sparse Gaussian processes
Yadi Wei
Rishit Sheth
Roni Khardon
74
14
0
07 Apr 2020
How Good are Low-Rank Approximations in Gaussian Process Regression?
C. Daskalakis
P. Dellaportas
A. Panos
70
3
0
03 Apr 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
83
12
0
17 Mar 2020
Linear-time inference for Gaussian Processes on one dimension
Jackson Loper
David M. Blei
John P. Cunningham
Liam Paninski
95
17
0
11 Mar 2020
Scalable Uncertainty for Computer Vision with Functional Variational Inference
Eduardo D C Carvalho
R. Clark
Andrea Nicastro
Paul H. J. Kelly
BDL
UQCV
424
22
0
06 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
55
0
0
06 Mar 2020
Localising Faster: Efficient and precise lidar-based robot localisation in large-scale environments
Li Sun
Daniel Adolfsson
Martin Magnusson
Henrik Andreasson
Ingmar Posner
T. Duckett
89
30
0
04 Mar 2020
Gaussian Process Policy Optimization
Anand Srinivasa Rao
Bidipta Sarkar
Tejas Narayanan
GP
33
0
0
02 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
109
95
0
02 Mar 2020
Online Binary Space Partitioning Forests
Xuhui Fan
Bin Li
Scott A. Sisson
43
8
0
29 Feb 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
85
165
0
21 Feb 2020
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
23
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
39
5
0
19 Feb 2020
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
61
22
0
18 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
177
17
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
81
15
0
11 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
Estimating Latent Demand of Shared Mobility through Censored Gaussian Processes
Daniele Gammelli
Inon Peled
Filipe Rodrigues
Dario Pacino
H. A. Kurtaran
Francisco Câmara Pereira
92
50
0
21 Jan 2020
Scalable Hyperparameter Optimization with Lazy Gaussian Processes
Raju Ram
Sabine Müller
Franz-Josef Pfreundt
N. Gauger
J. Keuper
GP
23
5
0
16 Jan 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
85
26
0
15 Jan 2020
Bayesian Quantile and Expectile Optimisation
Victor Picheny
Henry B. Moss
Léonard Torossian
N. Durrande
64
21
0
12 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
26
1
0
02 Jan 2020
Scalable Gaussian Process Regression for Kernels with a Non-Stationary Phase
J. Grasshoff
Alexandra Jankowski
P. Rostalski
55
3
0
25 Dec 2019
Gaussian Process Latent Variable Model Factorization for Context-aware Recommender Systems
Wei Huang
R. Xu
BDL
LRM
22
4
0
19 Dec 2019
Gaussian Process Priors for View-Aware Inference
Wenshuai Zhao
Ari Heljakka
Arno Solin
BDL
35
1
0
06 Dec 2019
Ordinal Bayesian Optimisation
Victor Picheny
Sattar Vakili
A. Artemev
55
8
0
05 Dec 2019
Scalable Bayesian Preference Learning for Crowds
Edwin Simpson
Iryna Gurevych
BDL
120
24
0
04 Dec 2019
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
119
5
0
22 Nov 2019
GP-ALPS: Automatic Latent Process Selection for Multi-Output Gaussian Process Models
P. Berkovich
E. Perim
W. Bruinsma
13
0
0
05 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
48
14
0
05 Nov 2019
Continual Multi-task Gaussian Processes
P. Moreno-Muñoz
A. Artés-Rodríguez
Mauricio A. Alvarez
80
13
0
31 Oct 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
88
43
0
26 Oct 2019
Parametric Gaussian Process Regressors
M. Jankowiak
Geoffrey Pleiss
Jacob R. Gardner
UQCV
65
5
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
140
3
0
15 Oct 2019
Regularized Sparse Gaussian Processes
Rui Meng
Herbert Lee
Braden C. Soper
Priyadip Ray
19
0
0
13 Oct 2019
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
95
23
0
17 Sep 2019
Efficient Transfer Bayesian Optimization with Auxiliary Information
Tomoharu Iwata
Takuma Otsuka
71
2
0
17 Sep 2019
Previous
1
2
3
...
7
8
9
...
11
12
13
Next