ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.6835
  4. Cited By
Gaussian Processes for Big Data

Gaussian Processes for Big Data

26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
    GP
ArXiv (abs)PDFHTML

Papers citing "Gaussian Processes for Big Data"

50 / 604 papers shown
Title
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
96
18
0
25 Nov 2020
Robust Gaussian Process Regression Based on Iterative Trimming
Robust Gaussian Process Regression Based on Iterative Trimming
Zhaozhou Li
Lu Li
Z. Shao
28
23
0
22 Nov 2020
Revisiting the Sample Complexity of Sparse Spectrum Approximation of
  Gaussian Processes
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
25
5
0
17 Nov 2020
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
30
4
0
16 Nov 2020
Sparse within Sparse Gaussian Processes using Neighbor Information
Sparse within Sparse Gaussian Processes using Neighbor Information
Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
43
16
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
111
61
0
08 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
71
25
0
06 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Inter-domain Deep Gaussian Processes
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
79
11
0
01 Nov 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
57
82
0
29 Oct 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with
  Order-Optimal Regret Performance
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
110
34
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRLBDL
89
29
0
26 Oct 2020
Variational Bayesian Unlearning
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDLMU
98
128
0
24 Oct 2020
Semi-parametric $γ$-ray modeling with Gaussian processes and
  variational inference
Semi-parametric γγγ-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
54
13
0
19 Oct 2020
Aggregating Dependent Gaussian Experts in Local Approximation
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
67
4
0
17 Oct 2020
Stochastic embeddings of dynamical phenomena through variational
  autoencoders
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
58
2
0
13 Oct 2020
Recyclable Gaussian Processes
Recyclable Gaussian Processes
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
BDL
47
1
0
06 Oct 2020
Using Bayesian deep learning approaches for uncertainty-aware building
  energy surrogate models
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
R. Evins
AI4CE
46
44
0
05 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
125
23
0
02 Oct 2020
Stein Variational Gaussian Processes
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
61
7
0
25 Sep 2020
Fixed Inducing Points Online Bayesian Calibration for Computer Models
  with an Application to a Scale-Resolving CFD Simulation
Fixed Inducing Points Online Bayesian Calibration for Computer Models with an Application to a Scale-Resolving CFD Simulation
Y. Duan
M. Eaton
Michael Bluck
13
4
0
15 Sep 2020
Generalized Multi-Output Gaussian Process Censored Regression
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
Kasper Pryds Rolsted
Dario Pacino
Filipe Rodrigues
43
14
0
10 Sep 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly
  Pathogenic Avian Influenza in the Netherlands
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
30
5
0
09 Sep 2020
Modulating Scalable Gaussian Processes for Expressive Statistical
  Learning
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
51
4
0
29 Aug 2020
Locally induced Gaussian processes for large-scale simulation
  experiments
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
77
21
0
28 Aug 2020
Fast Approximate Multi-output Gaussian Processes
Fast Approximate Multi-output Gaussian Processes
V. Joukov
Dana Kulic
25
7
0
22 Aug 2020
Machine Learning for Robust Identification of Complex Nonlinear
  Dynamical Systems: Applications to Earth Systems Modeling
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OODAI4ClAI4CE
67
3
0
12 Aug 2020
Multifidelity Data Fusion via Gradient-Enhanced Gaussian Process
  Regression
Multifidelity Data Fusion via Gradient-Enhanced Gaussian Process Regression
Yixiang Deng
Guang Lin
Xiu Yang
21
8
0
03 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
87
74
0
01 Aug 2020
On Hyperparameter Optimization of Machine Learning Algorithms: Theory
  and Practice
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
218
2,158
0
30 Jul 2020
Multioutput Gaussian Processes with Functional Data: A Study on Coastal
  Flood Hazard Assessment
Multioutput Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
A. F. López-Lopera
D. Idier
J. Rohmer
François Bachoc
67
22
0
28 Jul 2020
Probabilistic Active Meta-Learning
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
98
35
0
17 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
20
0
0
13 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for
  Temporal Gaussian Processes
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
58
13
0
12 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDLUQCV
84
121
0
11 Jul 2020
A Perspective on Gaussian Processes for Earth Observation
A Perspective on Gaussian Processes for Earth Observation
Gustau Camps-Valls
Dino Sejdinovic
Jakob Runge
Markus Reichstein
GP
50
58
0
02 Jul 2020
Learning Search Space Partition for Black-box Optimization using Monte
  Carlo Tree Search
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
113
128
0
01 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
79
56
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using
  Deep Gaussian Processes
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
68
36
0
29 Jun 2020
Stochastic Differential Equations with Variational Wishart Diffusions
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
61
8
0
26 Jun 2020
Variational Orthogonal Features
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDLDRL
71
12
0
23 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
88
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
96
116
0
18 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
134
123
0
17 Jun 2020
Longitudinal Variational Autoencoder
Longitudinal Variational Autoencoder
S. Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
DRLCMLBDL
88
37
0
17 Jun 2020
Balance is key: Private median splits yield high-utility random trees
Balance is key: Private median splits yield high-utility random trees
Shorya Consul
Sinead Williamson
75
2
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCVOODBDL
119
103
0
15 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
23
2
0
12 Jun 2020
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian
  process regression
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression
Kelly R. Moran
M. Wheeler
43
4
0
11 Jun 2020
Previous
123...678...111213
Next