Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1309.6835
Cited By
Gaussian Processes for Big Data
26 September 2013
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Processes for Big Data"
50 / 604 papers shown
Title
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
96
18
0
25 Nov 2020
Robust Gaussian Process Regression Based on Iterative Trimming
Zhaozhou Li
Lu Li
Z. Shao
28
23
0
22 Nov 2020
Revisiting the Sample Complexity of Sparse Spectrum Approximation of Gaussian Processes
Q. Hoang
T. Hoang
Hai Pham
David P. Woodruff
25
5
0
17 Nov 2020
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
30
4
0
16 Nov 2020
Sparse within Sparse Gaussian Processes using Neighbor Information
Gia-Lac Tran
Dimitrios Milios
Pietro Michiardi
Maurizio Filippone
43
16
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
111
61
0
08 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
71
25
0
06 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
79
11
0
01 Nov 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
57
82
0
29 Oct 2020
A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance
Sudeep Salgia
Sattar Vakili
Qing Zhao
110
34
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
89
29
0
26 Oct 2020
Variational Bayesian Unlearning
Q. Nguyen
Bryan Kian Hsiang Low
Patrick Jaillet
BDL
MU
98
128
0
24 Oct 2020
Semi-parametric
γ
γ
γ
-ray modeling with Gaussian processes and variational inference
S. Mishra-Sharma
Kyle Cranmer
MedIm
102
7
0
20 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
54
13
0
19 Oct 2020
Aggregating Dependent Gaussian Experts in Local Approximation
Hamed Jalali
Gjergji Kasneci
67
4
0
17 Oct 2020
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
58
2
0
13 Oct 2020
Recyclable Gaussian Processes
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
BDL
47
1
0
06 Oct 2020
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
R. Evins
AI4CE
46
44
0
05 Oct 2020
Gaussian Process Molecule Property Prediction with FlowMO
Henry B. Moss
Ryan-Rhys Griffiths
125
23
0
02 Oct 2020
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
61
7
0
25 Sep 2020
Fixed Inducing Points Online Bayesian Calibration for Computer Models with an Application to a Scale-Resolving CFD Simulation
Y. Duan
M. Eaton
Michael Bluck
13
4
0
15 Sep 2020
Generalized Multi-Output Gaussian Process Censored Regression
Daniele Gammelli
Kasper Pryds Rolsted
Dario Pacino
Filipe Rodrigues
43
14
0
10 Sep 2020
A Bayesian Nonparametric Analysis of the 2003 Outbreak of Highly Pathogenic Avian Influenza in the Netherlands
Rowland G. Seymour
T. Kypraios
P. O’Neill
T. Hagenaars
30
5
0
09 Sep 2020
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
51
4
0
29 Aug 2020
Locally induced Gaussian processes for large-scale simulation experiments
D. Cole
R. Christianson
R. Gramacy
77
21
0
28 Aug 2020
Fast Approximate Multi-output Gaussian Processes
V. Joukov
Dana Kulic
25
7
0
22 Aug 2020
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
67
3
0
12 Aug 2020
Multifidelity Data Fusion via Gradient-Enhanced Gaussian Process Regression
Yixiang Deng
Guang Lin
Xiu Yang
21
8
0
03 Aug 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
87
74
0
01 Aug 2020
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
218
2,158
0
30 Jul 2020
Multioutput Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
A. F. López-Lopera
D. Idier
J. Rohmer
François Bachoc
67
22
0
28 Jul 2020
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
98
35
0
17 Jul 2020
Orthogonally Decoupled Variational Fourier Features
Dario Azzimonti
Manuel Schürch
A. Benavoli
Marco Zaffalon
20
0
0
13 Jul 2020
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
58
13
0
12 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
84
121
0
11 Jul 2020
A Perspective on Gaussian Processes for Earth Observation
Gustau Camps-Valls
Dino Sejdinovic
Jakob Runge
Markus Reichstein
GP
50
58
0
02 Jul 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
113
128
0
01 Jul 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
79
56
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
68
36
0
29 Jun 2020
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
61
8
0
26 Jun 2020
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDL
DRL
71
12
0
23 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
88
43
0
19 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
96
116
0
18 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
134
123
0
17 Jun 2020
Longitudinal Variational Autoencoder
S. Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
DRL
CML
BDL
88
37
0
17 Jun 2020
Balance is key: Private median splits yield high-utility random trees
Shorya Consul
Sinead Williamson
75
2
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
119
103
0
15 Jun 2020
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
23
2
0
12 Jun 2020
Fast increased fidelity approximate Gibbs samplers for Bayesian Gaussian process regression
Kelly R. Moran
M. Wheeler
43
4
0
11 Jun 2020
Previous
1
2
3
...
6
7
8
...
11
12
13
Next